精英家教网 > 高中数学 > 题目详情
如图,在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,最大容积是
16000cm3
16000cm3
分析:设箱底边长为xcm,结合题意可得容积V(x)=
1
2
(60x2-x3)(0<x<60).再用导数工具研究V(x)在区间(0,60)上的单调性,可知当x=40时V(x)达到最大值.由此得到本题答案.
解答:解:设箱底边长为xcm,则箱高h=
60-x
2

∴箱子容积V(x)=x2h=
1
2
(60x2-x3)(0<x<60).
求导数,得V′(x)=60x-
3
2
x2
令V′(x)=60x-
3
2
x2=0,解得x=0(不合题意,舍去),x=40,
∵x∈(0,40)时,V′(x)>0;x∈(40,60)时,V′(x)<0
∴V(x)在区间(0,40)上为增函数,区间(40,60)上为减函数
由此可得V(x)的最大值是V(40)=16000.
故答案为:16000cm3
点评:本题以一个实际问题为例,求铁箱的容积最大值.着重考查了函数模型及其应用和利用导数研究函数的单调性、求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在边长为4的正方形ABCD的边上有一动点P,沿折线BCDA由点B(起点)向点A(终点)移动,设点P移动的路程为x,△APB的面积为y.
(1)求y关于x的函数关系式y=f(x);
(2)画出y=f(x)的图象;
(3)若△APB的面积不小于2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为5cm的正方形中挖去直角边长为4cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是
9
25
9
25

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)如图,在边长为3的等边三角形ABC中,E,F,P分别为AB,AC,BC边上的点,且满足AE=FC=CP=1,将△AEF沿EF折起到△A1EF的位置,如图,使平面A1EF⊥平面FEBP,连结A1B,A1P,
(1)求证:A1E⊥PF;
(2)若Q为A1B中点,求证:PQ∥平面A1EF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,最大容积是________.

查看答案和解析>>

同步练习册答案