精英家教网 > 高中数学 > 题目详情
设函数
(1)求的单调区间、最大值;
(2)讨论关于的方程的根的个数.
(1)函数的单调递增区间是;单调递减区间是;最大值为;(2)当时,关于的方程根的个数为0;当时,关于的方程根的个数为1;当时,关于的方程根的个数为2.

试题分析:(1)函数的定义域为全体实数.先求函数的导数,解不等式得单调减区间,解不等式得单调增区间,进而求得最大值;(2)构造函数,利用导数求得的最小值,根据这个最小值大于零、等于零、小于零讨论方程的根的个数.
试题解析:(1).               1分

时,单调递增;当时,单调递减;∴函数的单调递增区间是;单调递减区间是.            3分
的最大值为.              4分
(2)令.        5分
①当时,,∴
,∴,∴上单调递增.      7分
②当时,
,∴,∴在(0,1)上单调递减.
综合①②可知,当时,.        9分
时,没有零点,故关于方程的根的个数为0;
时,只有一个零点,故关于方程的根的个数为1;   11分
时,当时,由(1)知
要使,只需
时,由(1)知
要使,只需,所以时,有两个零点  13分
综上所述
时,关于的方程根的个数为0;
时,关于的方程根的个数为1;
时,关于的方程根的个数为2.         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1设
(1)当时,求f(x)的单调区间;
(2)求f(x)的零点个数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数 
(1)当时,求函数的最大值;
(2)令)其图象上任意一点处切线的斜率 恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,求实数的取值范围;
(Ⅲ)令若至少存在一个实数,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的总成立,求实数的取值范围;
(Ⅲ)设函数,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 
(1)如果处取得最小值,求的解析式;
(2)如果的单调递减区间的长度是正整数,试求的值.(注:区间的长度为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若内恒成立,求实数的取值范围.
(Ⅲ),求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(Ⅰ)若,讨论的单调性;
(Ⅱ)时,有极值,证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数的导数为轴恰有一个交点,则的最小值为(    )
A.3B.C.2D.

查看答案和解析>>

同步练习册答案