精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax﹣lnx(a∈R).
(1)当a=1时,求f(x)的最小值;
(2)若存在x∈[1,3],使 +lnx=2成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f(x)≥f( )成立,求a的取值范围.

【答案】
(1)解:f(x)=x﹣lnx(x>0)的导数为f′(x)=1﹣ =

当x>1时,f′(x)>0,f(x)递增;当0<x<1时,f′(x)>0,f(x)递减.

即有f(x)在x=1处取得极小值,也为最小值,且为1


(2)解:存在x∈[1,3],使 +lnx=2成立,

即为 =2﹣lnx,

即有a=

设g(x)= ,x∈[1,3],

则g′(x)=(1﹣lnx)(1+ ),

当1<x<e时,g′(x)>0,g(x)递增;当e<x<3时,g′(x)<0,g(x)递减.

则g(x)在x=e处取得极大值,且为最大值e+

g(1)=2,g(3)=3(2﹣ln3)+ >2,

则a的取值范围是[2,e+ ]


(3)解:若对任意的x∈[1,+∞),有f(x)≥f( )成立,

即为ax﹣lnx≥ ﹣ln

即有a(x﹣ )≥2lnx,x≥1,

令F(x)=a(x﹣ )﹣2lnx,x≥1,

F′(x)=a(1+ )﹣

当x=1时,原不等式显然成立;

当x>1时,由题意可得F′(x)≥0在(1,+∞)恒成立,

即有a(1+ )﹣ ≥0,

即a≥ ,由 = =1,

则a≥1.

综上可得a的取值范围是[1,+∞)


【解析】(1)求得f(x)的导数,求得单调区间,可得f(x)的极小值,也为最小值;(2)由题意可得a= ,设g(x)= ,x∈[1,3],求出导数和单调区间,极值和最值,即可得到所求a的范围;(3)由题意可得ax﹣lnx≥ ﹣ln ,即有a(x﹣ )≥2lnx,x≥1,令F(x)=a(x﹣ )﹣2lnx,x≥1,求出导数,讨论x=1,x>1时,F(x)递增,运用分离参数和基本不等式,即可得到a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:实数x满足x2﹣5ax+4a2<0,其中a>0,命题q:实数x满足 . (Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=2,an+1= (n∈N+).
(1)计算a2 , a3 , a4 , 并猜测出{an}的通项公式;
(2)用数学归纳法证明(1)中你的猜测.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是方程 的两个不等实根,函数的定义域为.

1)当时,求函数的最值;

(2)试判断函数在区间的单调性;

(3)设试证明:对于.

(参考公式: 当且仅当时等号成立)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足 =1,公差d∈(﹣1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,则该数列首项a1的取值范围是(
A.(
B.[ ]
C.(
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:

时间

第4天

第32天

第60天

第90天

价格(千元)

23

30

22

7

(Ⅰ)写出价格f(x)关于时间x的函数关系式(x表示投放市场的第x天,x∈N*);
(Ⅱ)销售量g(x)与时间x的函数关系式为 ,则该产品投放市场第几天的销售额最高?最高为多少千元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,A(1,3),BC边所在的直线方程为y﹣1=0,AB边上的中线所在的直线方程为x﹣3y+4=0. (Ⅰ)求B,C点的坐标;
(Ⅱ)求△ABC的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽车费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的平均费用最少?

查看答案和解析>>

同步练习册答案