分析 画出正弦函数图象,数形结合可得答案.
解答 解:作出函数y=sinx的图象,如图所示:![]()
由图可得:(1)sinx≥$\frac{1}{2}$时,x∈[$\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ],k∈Z,即原不等式的解集为[$\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ],k∈Z;
(2)sinx≤$\frac{1}{2}$时,x∈[$\frac{5π}{6}$+2kπ,$\frac{13π}{6}$+2kπ],k∈Z,即原不等式的解集为[$\frac{5π}{6}$+2kπ,$\frac{13π}{6}$+2kπ],k∈Z;
(3)sin(x+$\frac{π}{6}$)≥$\frac{\sqrt{3}}{2}$时,x+$\frac{π}{6}$∈[$\frac{π}{3}$+2kπ,$\frac{2π}{3}$+2kπ],k∈Z,即x∈[$\frac{π}{6}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z,即原不等式的解集为[$\frac{π}{6}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z;
(4)sin(x+$\frac{π}{6}$)≤$\frac{\sqrt{3}}{2}$时,x+$\frac{π}{6}$∈[$\frac{2π}{3}$+2kπ,$\frac{7π}{3}$+2kπ],k∈Z,即x∈[$\frac{π}{2}$+2kπ,$\frac{13π}{6}$+2kπ],k∈Z,即原不等式的解集为[$\frac{π}{2}$+2kπ,$\frac{13π}{6}$+2kπ],k∈Z;
点评 本题考查的知识点是正弦函数的图象,三角不等式的解法,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com