精英家教网 > 高中数学 > 题目详情

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为

(1)求椭圆C的方程和其“准圆”方程;

(2)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1l2,使得l1l2与椭圆C都只有一个交点.求证:l1l2

答案:
解析:

  解:(1)因为,所以  2分

  所以椭圆的方程为,准圆的方程为  4分

  (2)①当中有一条无斜率时,不妨设无斜率,

  因为与椭圆只有一个公共点,则其方程为

  当方程为时,此时与准圆交于点

  此时经过点(或且与椭圆只有一个公共点的直线是

  (或,即(或,显然直线垂直;

  同理可证方程为时,直线垂直  7分

  ②当都有斜率时,设点其中

  设经过点与椭圆只有一个公共点的直线为

  则,消去得到

  即

  

  经过化简得到:  9分

  因为,所以有

  设的斜率分别为,因为与椭圆都只有一个公共点,

  所以满足上述方程

  所以,即垂直  13分


练习册系列答案
相关习题

科目:高中数学 来源:2011年江苏省宿迁市宿豫中学高考数学二模试卷(解析版) 题型:解答题

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“伴随圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F1的距离为
(1)求椭圆C的方程及其“伴随圆”方程;
(2)若倾斜角为45°的直线l与椭圆C只有一个公共点,且与椭圆C的伴随圆相交于M、N两点,求弦MN的长;
(3)点P是椭圆C的伴随圆上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源:2013年辽宁省五校协作体高考数学一模试卷(文科)(解析版) 题型:解答题

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程.
(2)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点.求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源:2012年山东省烟台市高考数学一模试卷(文科)(解析版) 题型:解答题

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程.
(2)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点.求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源:2011年上海市宝山区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“伴随圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F1的距离为
(1)求椭圆C的方程及其“伴随圆”方程;
(2)若倾斜角为45°的直线l与椭圆C只有一个公共点,且与椭圆C的伴随圆相交于M、N两点,求弦MN的长;
(3)点P是椭圆C的伴随圆上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源:2011年湖南省长沙市长望浏宁四县市高三3月调研数学试卷(理科)(解析版) 题型:解答题

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程.
(2)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点.求证:l1⊥l2

查看答案和解析>>

同步练习册答案