精英家教网 > 高中数学 > 题目详情

【题目】(本题满分15分)

在等差数列{an},a1=1,公差d≠0,a1a2a5是等比数列{bn}的前三项

(1)求数列{an}{bn}的通项公式;

(2)设cn=an·bn求数列{cn}的前n项和Sn

【答案】(1)bn=3n-1;(2)(2)Sn=(n-1)·3n+1

【解析】本试题主要是考查了数列的概念,和数列的求和,尤其是等差数列和等比数列的性质的运用,以及利用错位相减法求解数列的和的思想的综合运用。

(1)根据已知的项之间的关系式,运用基本元素表示得到数列的通项公式的求解

(2)结合第一问中的结论,得到cn=an·bn=(2n-1)·3n-1的通项公式,分析通项公式的特点,选择错位相减法求解数列的和。

解: (1)a1a2a5是等比数列{bn}的前三项得,

a22= a1·a5(a1+d)2=a1· (a1+4d) 2分

a12+2a1d+ d2 = a12+4a1dd2 =2a1d,又d≠0,所以d=2a1=2,

从而an= a1+(n-1) d=2n-15分

则b1= a1=1,b2= a2=3,

则等比数列{bn}的公比q=3,从而bn=3n-1 7分

(2)(1)得,cn=an·bn=(2n-1)·3n-1 8分

Sn= 1·1+3·3+5·32+7·33++(2n-1)·3n-1

3Sn= 3+3·32+5·33++(2n-33n-1+(2n-1)·3n 10分

得, 2Sn= 1·1+2·3+2·32+2·33++2·3n-1(2n-1)·3n

=1+(2n-1)·3n=2 (n-1)·3n2 13分

Sn=(n-1)·3n+1 15分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,.

1)求证:平面平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式.在某市,随机调查了200名顾客购物时使用手机支付的情况,得到如下的2×2列联表,已知从使用手机支付的人群中随机抽取1人,抽到青年的概率为.

(I)根据已知条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?

2×2列联表:

青年

中老年

合计

使用手机支付

120

不使用手机支付

48

合计

200

(Ⅱ)现采用分层抽样的方法从这200名顾客中按照“使用手机支付”和“不使用手机支付”抽取一个容量为10的样本,再从中随机抽取3人,求这三人中“使用手机支付”的人数的分布列及期望.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥的三视图如图所示,.

1)求该三棱锥的表面积;

2)求该三棱锥内切球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足,若的最大值为16,则实数__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列的前项和,点)均在函数的图像上.

(1)求数列的通项公式;

(2)设是数列的前项和,求满足)的最大正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,离心率为为坐标原点.

1)求椭圆的标准方程;

2)设为椭圆上的三点,交于点,且,当的中点恰为点时,判断的面积是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有2009个人站成一排,从第一名开始13报数,凡报到3的就退出队伍,其余的向前靠拢站成新的一排.再按此规则继续进行,直到第次报数后只剩下3人为止.试问:最后剩下的3人最初站在什么位置?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲船在A处,乙船在A处的南偏东45°方向,距A9海里的B处,并以20海里每小时的速度沿南偏西15°方向行驶,若甲船沿南偏东θ度的方向,并以28海里每小时的速度行驶,恰能在C处追上乙船.问用多少小时追上乙船,并求sin θ的值.(结果保留根号,无需求近似值)

查看答案和解析>>

同步练习册答案