精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-2x2+(a+3)x+1-2a,g(x)=x(1-2x)+a,其中a∈R.
(1)若函数f(x)是偶函数,求函数f(x)在区间[-1,3]上的最小值;
(2)用函数的单调性的定义证明:当a=-2时,f(x)在区间(
14
,+∞)
上为减函数;
(3)当x∈[-1,3],函数f(x)的图象恒在函数g(x)图象上方,求实数a的取值范围.
分析:(1)根据偶函数的定义f(x)=f(-x),求出a的值和函数解析式,进而求出最小值;
(2)先设x1<x2 ,x1、x2(
1
4
,+∞)
,推出f(x1)>f(x2),从而可以证明结论;
(3)首先由题意得出(a+2)x+1-3a>0在[-1,3]上恒成立.转化成求函数h(x)=(a+2)x+1-3a的最小值,要采取分类讨论次函数的斜率与单调性的关系,求出a的取值范围.
解答:解:(1)函数f(x)是偶函数
∴f(x)=f(-x),即:-2x2+(a+3)x+1-2a=-2x2-(a+3)x+1-2a
∴a=-3
则f(x)=-2x2+7
∴对称轴为x=0
∴最小值f(3)=-11
(2)∵a=-2
∴f(x)=-2x2+x+5
设x1<x2 ,x1、x2(
1
4
,+∞)

f(x1)-f(x2)=-2x12+x1+5+2x22-x2-5=(x2-x1)[2(x1+x2)-1]
∵x1<x2 ,∴x2>x1
∵x1、x2(
1
4
,+∞)
∴2(x1+x2)>1∴2(x1+x2)-1>0
∴f(x1)-f(x2)>0 即f(x1)>f(x2
∴当a=-2时,f(x)在区间(
1
4
,+∞)
上为减函数.
(3)由题意得-2x2+(a+3)x+1-2a>x(1-2x)+a在[-1,3]上恒成立.即(a+2)x+1-3a>0在[-1,3]上恒成立.
设h(x)=(a+2)x+1-3a,
①若a>-2,该函数是增函数,只需f(-1)>0即可,
则f(-1)=-4a-1>0,解得a<-
1
4
,所以-2<a<-
1
4

②若a<-2,该函数是减函数,只需f(3)>0即可,
则f(3)=7>0,,所以a<-2满足;
③若a=-2,则该函数是y=7,它总在x轴上方,所以a=-2满足要求.
故a的取值范围是a<-
1
4
点评:本题考查了函数的单调性、奇偶性等知识,综合性强,第三问是一次函数的斜率与单调性的关系,同时考查分类讨论的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案