精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的最大值,并写出取最大值时的取值集合;
(2)在中,角的对边分别为,若的最小值.

(1),(2)

解析试题分析:(1)研究三角函数性质,首先将其化为基本三角函数形式,即.利用两角和与差余弦公式、二倍角公式、配角公式,化简得,再结合三角函数基本性质,可得函数的最大值为.的取值集合为.(2)解三角形问题,利用正余弦定理进行边角转化. 因为,所以已知一角及两夹边,利用余弦定理得.结合基本不等式,可得.
试题解析:(1)
.
∴函数的最大值为.当取最大值时
,解得.
的取值集合为.              (6分)
(2)由题意,化简得
,, ∴, ∴
中,根据余弦定理,得.
,知,即.
∴当时,取最小值.                  (12分)
考点:两角和与差余弦公式、二倍角公式、配角公式, 余弦定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)求的最小正周期及值域;
(2)求单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)设是函数图象的一条对称轴,求的值.
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当函数取得最大值时,求自变量的集合;
(2)求该函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(1)求函数的周期;
(2)如果的最小值为,求的值,并求此时的最大值及图像的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数.
⑴设,x为某三角形的内角,求时x的值;
⑵设,当函数取最大值时,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)求的值;(2)若,,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的最小正周期和值域;
(2)在锐角△中,角的对边分别为,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(cosx,-),b=(sinx,cos2x),x∈R,设函数f(x)=a·b.
(1)求f(x)的最小正周期.
(2)求f(x)在[0,]上的最大值和最小值.

查看答案和解析>>

同步练习册答案