精英家教网 > 高中数学 > 题目详情
15.设函数y=f(x)的图象与y=log2(x+a)的图象关于直线y=x对称,且f(2)+f(4)=6,则a=7.

分析 由题意f(x)=2x-a,利用f(2)+f(4)=6,建立方程,即可求出a的值.

解答 解:由题意f(x)=2x-a.
∵f(2)+f(4)=6,
∴22-a+24-a=6,
∴a=7,
故答案为7.

点评 本题考查反函数,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数y=x2-4x+1
(1)求函数值y的取值范围.
(2)若0≤x≤6,求y的取值范围.
(3)若0≤x≤a,求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求适合下列条件的圆锥曲线的方程
(1)焦点坐标为$({\sqrt{3},0}),({-\sqrt{3},0})$,准线方程为$x=±3\sqrt{3}$的椭圆;
(2)焦点是$(±\sqrt{26},0)$,渐近线方程是$y=±\frac{3}{2}x$的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题p:?x∈[1,2],x2-m≥0,命题q:?x∈R,x2+mx+1>0,若命题p∧q为真命题,则实数m的取值范围为(-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若定义在R上的函数f(x),满足f(x+2)=f(x),且当x∈[-1,1]时,f(x)=x2,函数g(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x-1),x>1}\\{{2}^{x},x≤1}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-4,5]内的零点的个数为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=|x-2|,g(x)=kx-1,若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是$\frac{1}{2}$<k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{4x+1,}&{x<1}\\{{x^2}-6x+10,}&{x≥1}\end{array}}\right.$,关于a的不等式f(a)-ta+2t-2>0的解集是(a1,a2)∪(a3,+∞),若a1a2a3<0,则实数t的取值范围是(  )
A.(-3,4)B.$(\frac{1}{2},4)$C.$(-2,\frac{1}{2})$D.(-3,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=f(x)是定义在R上的偶函数,对于x∈R都有f(x+4)=f(x)+f(2)成立,且f(-4)=-2,当x1,x2∈[0,2],且x1≠x2时,都有(x1-x2)[f(x1)-f(x2)]>0,则下列命题错误的是(  )
A.f(2016)=-2B.函数y=f(x)的一条对称轴为x=-6
C.函数y=f(x)在[-8,-6]上为减函数D.函数y=f(x)在[-9,9]上有4个根

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=x•ex-a有且只有一个零点,则实数a的取值集合为{$-\frac{1}{e}$}.

查看答案和解析>>

同步练习册答案