精英家教网 > 高中数学 > 题目详情

设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B≠∅”是真命题,则实数a的取值范围是________.


分析:首先要将条件进行转化,即命题P:A∩B≠空集为假命题,再结合集合A、B的特征利用数形结合即可获得必要的条件,解不等式组即可获得问题的解答.
解答:解:∵A={(x,y)|(x-4)2+y2=1},表示平面坐标系中以M(4,0)为圆心,半径为1的圆,
B={(x,y)|(x-t)2+(y-at+2)2=1},表示以N(t,at-2)为圆心,半径为1的圆,且其圆心N在直线ax-y-2=0上,如图.
如果命题“?t∈R,A∩B≠∅”是真命题,即两圆有公共点,则圆心M到直线ax-y-2=0的距离不大于2,
,解得0≤a≤
∴实数a的取值范围是
故答案为:
点评:本题考查的是集合运算和命题的真假判断与应用的综合类问题.在解答的过程当中充分体现了圆的知识、集合运算的知识以及命题的知识.同时问题转化的思想也在此题中得到了很好的体现.值得同学们体会和反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为(  )
A、(1,3)
B、(1,1)
C、(
3
5
1
5
)
D、(
1
2
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为
3
5
1
5
3
5
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+y,x-y)在映射下,B中的元素为(4,2)对应的A中元素为(  )

查看答案和解析>>

科目:高中数学 来源:2013-2014学年吉林省延边州汪清六中高三(上)9月月考数学试卷(解析版) 题型:选择题

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为( )
A.(1,3)
B.(1,1)
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年吉林省延边州汪清六中高三(上)第一次月考数学试卷(文科)(解析版) 题型:选择题

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为( )
A.(1,3)
B.(1,1)
C.
D.

查看答案和解析>>

同步练习册答案