精英家教网 > 高中数学 > 题目详情
已知α为△ABC的一个内角,且sinα-cosα=
13
13
,则tanα的值为(  )
A、
3
2
2
3
B、
3
2
C、
3
4
4
3
D、
4
3
考点:同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:将已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,求出2sinαcosα=
12
13
,确定出sinα+cosα大于0,利用完全平方公式求出sinα+cosα的值,联立求出sinα与cosα的值,即可确定出tanα的值.
解答: 解:将sinα-cosα=
13
13
①,两边平方得:(sinα-cosα)2=sin2α+cos2α-2sinαcosα=1-2sinαcosα=
1
13

整理得:2sinαcosα=
12
13

∴(sinα+cosα)2=sin2α+cos2α+2sinαcosα=1+2sinαcosα=
25
13

∵α为△ABC的一个内角,
∴sinα>0,cosα>0,即sinα+cosα>0,
∴sinα+cosα=
5
13
13
②,
联立①②,解得:sinα=
3
13
13
,cosα=
2
13
13

则tanα=
3
2

故选:B.
点评:此题考查了同角三角函数基本关系的运用,以及完全平方公式,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],设命题p:“f(x)的定义域为R”;命题q:“f(x)的值域为R”.
(Ⅰ)分别求命题p、q为真命题时实数a的取值范围;
(Ⅱ)¬p是q的什么条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,2x≠0”的否定是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的首项为8,Sn是其前n项的和,某同学经计算得S1=8,S2=20,S3=36,S4=65,后来该同学发现其中一个数算错了,则该数为(  )
A、S1
B、S2
C、S3
D、S4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2x
+1,x<-1
2-x,x≥-1
,则不等式f(2x+1)>3的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:“关于x的方程x2+mx+1=0有两个不等的负实根”;命题q:“幂函数f(x)=x2m-5在(0,+∞)上是减函数”,若p或q为真,p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若P1,P2,…,P9是y2=4x上的点,它们的横坐标依次为x1,x2,…,x9,F是抛物线的焦点,若x1,x2,…,xn(n∈N*)成等差数列且x1+x2+…+x9=45,则|P5F|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,且BC边上的高等于BC的一半,则
c
b
+
b
c
最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cosx+sinx,2cosx),
n
=(cosx-sinx,-sinx).
(1)求f(x)=
m
n
的最小正周期和单调减区间;
(2)将函数y=f(x)的图象向右平移
π
8
个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,在△ABC中,角A、B、C的对边分别为a,b,c,若f(
A
2
)=0,g(B)=
2
2
,b=2,求a的值.

查看答案和解析>>

同步练习册答案