精英家教网 > 高中数学 > 题目详情
设函数(a∈R)。
(1)讨论函数f(x)的单调性;
(2)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k。问:是否存在a,使得k=2-a?若存在,求出a的值;若不存在,请说明理由。
解:(1)f(x)定义域为(0,+∞),

令g(x)=x2-ax+1,△=a2-4
①当-2≤a≤2时,△≤0,f′(x)≥0,故f(x)在(0,+∞)上单调递增;
②当a<-2时,△>0,g(x)=0的两根都小于零,在(0,+∞)上,f′(x)>0,故f(x)在(0,+∞)上单调递增;
③当a>2时,△>0,g(x)=0的两根为
时,
时,
时,
故f(x)分别在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减;
(2)由(1)知
因为
所以
又由(1)知,
于是
若存在a,使得,则

亦即
再由(1)知,函数在(0,+∞)上单调递增,而
所以
这与式矛盾,故不存在a,使得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数数学公式(a∈R),函数g(x)的图象与函数f(x)的图象关于点A(1,2)对称.
(1)求函数g(x)的解析式;
(2)若关于x的方程g(x)=a有且仅有一个实数解,求a的值,并求出方程的解;
(3)若函数f(x)在区间[2,+∞)上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年四川省高考数学试卷(理科)(解析版) 题型:选择题

设函数(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x,y)使得f(f(y))=y,则a的取值范围是( )
A.[1,e]
B.[e-1-1,1]
C.[1,e+1]
D.[e-1-1,e+1]

查看答案和解析>>

科目:高中数学 来源:2011年上海市嘉定区高考数学一模试卷(文科)(解析版) 题型:解答题

设函数(a∈R),函数g(x)的图象与函数f(x)的图象关于点A(1,2)对称.
(1)求函数g(x)的解析式;
(2)若关于x的方程g(x)=a有且仅有一个实数解,求a的值,并求出方程的解;
(3)若函数f(x)在区间[2,+∞)上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:选择题

(5分)设函数(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是(  )

A.  [1,e]       B.   [e1﹣1,1]      C.   [1,e+1]  D.  [e1﹣1,e+1]

 

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(四川卷解析版) 题型:选择题

(5分)设函数(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是(  )

A.  [1,e]       B.   [1,1+e]  C.   [e,1+e]  D.  [0,1]

 

查看答案和解析>>

同步练习册答案