精英家教网 > 高中数学 > 题目详情
19.函数y=|logax|,其中0<a<1,比较f(2),f($\frac{1}{4}$),f($\frac{1}{3}$)的大小.

分析 由函数f(x)=|logax|在(0,1)上单调性可判断三个函数值的大小.

解答 解:∵0<a<1,
∴当x∈(0,1)时,f(x)=|logax|=logax单调递减,
又∵f(2)=f($\frac{1}{2}$);
∴f($\frac{1}{4}$)>f($\frac{1}{3}$)>f(2)

点评 本题主要考查了利用对数函数的单调性比较对数值的大小,解答本题的关键是熟练掌握对数函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.直线l的极坐标方程为ρcosθ-$\sqrt{3}$ρsinθ=5,圆C的参数方程为$\left\{\begin{array}{l}{x=5+2cosα}\\{y=4+2sinα}\end{array}\right.$(α为参数,α∈[0,2π)),则直线l与圆C的位置关系是(  )
A.相交B.相切C.相离D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)为定义域为R的偶函数,当x≥0时,f(x)=2-x+2-4
(1)求f(x)的解析式;
(2)作出函数f(x)的图象,并指出其单调区间和值域(不要求证明)
(3)若关于x的方程f(x)=m 有两解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=lg($\frac{2}{1-x}$-1)的图象关于原点对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.是否存在实数a,使得f(x)=loga(ax-$\sqrt{x}$) 在[2,4]上是增函数?若存在,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,则$\frac{|NB|}{|NA|}$-$\frac{|MA|}{|MB|}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C:x2+y2-4ax+2ay+20a-20=0.
①求证:不论a取何实数,曲线C必过一定点A
②当a≠2时,求证:曲线C是一个圆,且圆心在一条直线上并写出此直线方程.
③若a=1时,动点P到①中定点A及点B(-2,1)的距离之比为1:2,求点P的轨迹M,并指出曲线M与曲线C的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知U={1,3,x3+3x2+2x},A={1,|2x-1|},若∁UA={0},则x的取值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)的定义域为(-∞,-1)∪(1,+∞),且f(x+1)为奇函数,当x>1时,f(x)=2x2-12x+16,则函数y=f(x)-2的所有零点之和是5.

查看答案和解析>>

同步练习册答案