精英家教网 > 高中数学 > 题目详情

椭圆C:=1(a>b>0)的两个焦点为F1、F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=,|PF2|=

(1)求椭圆C的方程;

(2)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于A、B两点,且A、B关于点M对称,求直线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源:2015届福建晋江季延中学高二上学期期中考试文数学试卷(解析版) 题型:解答题

如图,F1,F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°

(1)求椭圆C的离心率;

(2)已知△AF1B的面积为40,求a,b的值

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏南京金陵中学高三第一学期期中考试理科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为

(1)求椭圆C的方程;

(2)过原点且斜率为的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;

(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N 的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高三年级联考理科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的焦距为4,且与椭圆x2=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.

(1)求椭圆C的标准方程;

(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省、金陵中学、南京外国语学校高三三校联考数学卷 题型:解答题

已知椭圆C:+=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点.点P是⊙O上的动点.

(1)若P(-1,),PA是⊙O的切线,求椭圆C的方程;

(2)是否存在这样的椭圆C,使得是常数?

如果存在,求C的离心率;如果不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012年广东省高二12月月考理科数学 题型:解答题

.已知椭圆C:+=1(a>b>0)的长轴长为4.

(1)若以原点为圆心、椭圆短半轴为半径的圆与直线yx+2相切,求椭圆C的焦点坐标;

(2)若点P是椭圆C上的任意一点,过焦点的直线l与椭圆相交于MN两点,记直线PMPN的斜率分别为kPMkPN,当kPM·kPN=-时,求椭圆的方程.

 

查看答案和解析>>

同步练习册答案