精英家教网 > 高中数学 > 题目详情
12.过点(3,1)且与直线x-2y-3=0垂直的直线方程是(  )
A.2x+y-7=0B.x+2y-5=0C.x-2y-1=0D.2x-y-5=0

分析 由两直线垂直的性质可知,所求的直线的斜率k,然后利用直线的点斜式可求直线方程

解答 解:由两直线垂直的性质可知,所求的直线的斜率k=-2
所求直线的方程为y-1=-2(x-3)即2x+y-7=0
故选:A.

点评 本题主要考查了直线方程的求解,解题的关键是利用垂直关系求解出直线的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.为了增强市民的环境保护组织,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织,现按年龄把该组织的成员分成5组:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的频率分布直方图如图所示,已知该组织的成员年龄在[35,40)内有20人
(1)求该组织的人数;
(2)若从该组织年龄在[20,25),[25,30),[30,35)内的成员中用分层抽样的方法共抽取14名志愿者参加某社区的宣传活动,问应各抽取多少名志愿者?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知O是三角形ABC内部一点,满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+m$\overrightarrow{OC}$=$\overrightarrow{0}$,$\frac{{S}_{△AOB}}{{S}_{△ABC}}$=$\frac{4}{7}$,则实数m=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知一个k进制数132与十进制数42相等,那么k等于(  )
A.8或5B.6C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(α)=$\frac{cos(π-α)sin(\frac{3}{2}π+α)}{cosα}$.
(1)若α为第二象限角且f(α)=-$\frac{3}{5}$,求$\frac{sin2α+cos2α+1}{1+tanα}$的值;
(2)若5f(α)=4f(3α+2β).试问tan(2α+β)•tan(α+β)是否为定值(其中α≠kπ+$\frac{π}{2}$,α+β≠kπ+$\frac{π}{2}$,2α+β≠kπ+$\frac{π}{2}$,3α+2β≠kπ+$\frac{π}{2}$,k∈Z)?若是,请求出定值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,且SE=2EB.
(1)证明:DE∥平面SBC;
(2)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图则该几何体的体积是(  )
A.B.C.12πD.14π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如下,则几何体的表面积为(  )
A.2$\sqrt{5}$+2$\sqrt{2}$B.6+2$\sqrt{3}$+2$\sqrt{2}$C.2+2$\sqrt{5}$+2$\sqrt{2}$D.6+2$\sqrt{5}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则此几何体的体积是(  )
A.$\frac{10}{3}$B.4C.$\frac{20}{3}$D.$\frac{16}{3}$

查看答案和解析>>

同步练习册答案