精英家教网 > 高中数学 > 题目详情
(本题满分12分)已知定义在区间(0,+∞)上的函数f(x)满足f(+f(x2)=f(x1),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性并加以证明;
(3)若f(3)=-1,解不等式f(|x|)>-2.
(1)f(1)=0.(2)函数f(x)在区间(0,+∞)上是单调递减函数.
(3){x| -9<x<0或0<x<9}.
本试题主要是考查了函数的单调性和不等式的解集,
(1)令x2=x1>0,代入得f(1)+f(x1)=f(x1),故f(1)=0.
(2)任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,
所以f<0,即f (x1)-f(x2)<0,因此f(x1)<f(x2),
(3)由题意有f=f(x1)-f(x2),则f=f(9)-f(3),而f(3)=-1,所以f(9)=-2进而求解不等式。
解 (1)令x2=x1>0,代入得f(1)+f(x1)=f(x1),故f(1)=0.……………………3分
(2)任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,
所以f<0,即f (x1)-f(x2)<0,因此f(x1)<f(x2),
所以函数f(x)在区间(0,+∞)上是单调递减函数.……………………7分
(3)由题意有f=f(x1)-f(x2),则f=f(9)-f(3),而f(3)=-1,所以f(9)=-2.………………9分
由于函数f(x)在区间(0,+∞)上是单调递减函数,
由f(|x|)>f(9),得|x|<9,∴-9<x<9.……………………11分
又因为|x|>0,因此不等式的解集为{x| -9<x<0或0<x<9}.……………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

对于函数,存在区间,当时,,则称倍值函数。已知倍值函数,则实数的取值范围是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若f(x)= 在(-1,+∞)上满足对任意x1<x2,都有f(x1)>f(x2) ,则实数a的取值范围是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

知函数
(1)若函数上是单调减函数,求实数a的取值范围;
(2)讨论的极值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,其中为常数,,则=_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、函数,当(   )(以下
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分14分)设函数.
(1)求的单调区间;
(2)若当时,(其中不等式恒成立,求实数m的取值范围;
(3)试讨论关于x的方程:在区间[0,2]上的根的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数是定义在区间上的奇函数,且在上单调递增,若
实数满足:,求的取值范围.      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点,当取最小值时,的值等于(  ).
A.B.C.D.

查看答案和解析>>

同步练习册答案