精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

在如图所示的多面体中,⊥平面,

的中点.

(1)求证:

(2)求平面与平面所成锐二面角的余弦值.

 

 

 

【答案】

(1) 解法1

 

 

证明:∵平面平面

,                                

平面

平面.     …………2分

,则平面.

平面

.            …………4分

,∴四边形平行四边形,

,又

∴四边形为正方形,

,                                        ……………6分

平面平面,

⊥平面.                            ………………………7分

平面,

.                             ………………………8分

(2)∵平面平面

∴平面⊥平面

由(1)可知

⊥平面

平面

                              ……………………9分

的中点,连结

∵四边形是正方形,

平面平面

⊥平面

[来源:学|科|网Z|X|X|K]

是二面角的平面角,    ………………………12分

由计算得

            ………………………13分

∴平面与平面所成锐二面角的余弦值为.………………………14分

解法2

平面平面平面

,

两两垂直.   ……………………2分

以点E为坐标原点,分别为轴建立如图所示的空间直角坐标系.

 

 

由已知得,(0,0,2),(2,0,0),

(2,4,0),(0,3,0),(0,2,2),

(2,2,0).      …………………………4分

,………6分

,    ………7分

.    …………………………8分

(2)由已知得是平面的法向量.       ………………………9分

设平面的法向量为

,即,令,得. ……………12分

设平面与平面所成锐二面角的大小为

  …………………………13分

∴平面与平面所成锐二面角的余弦值为.  …………………………14分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案