精英家教网 > 高中数学 > 题目详情

若数列{an}满足数学公式,(n∈N*,d为常数),则称数列{an}为调和数列.已知数列数学公式为调和数列,且x1+x2+x3+…+x20=200,则x1+x20=________;x3x18的最大值等于________.

20    100
分析:根据题意可得xn+1-xn=d=常数,所以数列{xn}是等差数列.利用等差数列的性质可得:x1+x20=20,所以20=x3+x18再利用基本不等式可得x3x18≤100.
解答:因为数列为调和数列,
所以结合调和数列的定义可得:xn+1-xn=d=常数,
所以数列{xn}是等差数列.
因为x1+x2+x3+…+x20=200,
所以结合等差数列的性质可得:x1+x2+x3+…+x20=10(x1+x20)=200,
所以x1+x20=20,
所以20=x3+x18≥2,即x3x18≤100.
故答案为20,100.
点评:本题主要考查等差数列的定义与性质,以及利用基本不等式求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,an+1=2an+n,则通项an=
3×2n-1-n-1
3×2n-1-n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设m>3,对于数列{an} (n=1,2,…,m,…),令bk为a1,a2,…,ak中的最大值,称数列 {bn} 为{an} 的“递进上限数列”.例如数列2,1,3,7,5的递进上限数列为2,2,3,7,7.则下面命题中
①若数列{an} 满足an+3=an,则数列{an} 的递进上限数列必是常数列;
②等差数列{an} 的递进上限数列一定仍是等差数列
③等比数列{an} 的递进上限数列一定仍是等比数列
正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)若数列{an}满足an+12-
a
2
n
=d
(d为正常数,n∈N+),则称{an}为“等方差数列”.甲:数列{an}为等方差数列;乙:数列{an}为等差数列,则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)已知函数f(x)=ax-
ln(1+x)
1+x
在x=0处取得极值.
(I)求实数a的值,并判断,f(x)在[0,+∞)上的单调性;
(Ⅱ)若数列{an}满足a1=1,an+1=f(an),求证:0<an+1<an≤l;
(Ⅲ)在(II)的条件.下,记sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求证:sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x+1
,若数列{an}满足:an>0,a1=1,an+1=[f(
an
)]2
(I)求数列{an}的通项公式数列an
(II)若数列{an}的前n项和为Sn,证明:Sn<2.

查看答案和解析>>

同步练习册答案