精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=1,an+1=2an-n2+3n(n∈N+),
(1)是否存在常数λ,μ,使得数列{an+λn2+μn}是等比数列,若存在,求λ,μ的值,若不存在,说明理由;
(2)设bn=an-n2+n(n∈N+),数列{bn}的前n项和为Sn,是否存在常数c,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立?并证明你的结论;
(3)设cn=
1
an+n-2n-1
,Tn=c1+c2+…+c3,证明
6n
(n+1)(2n+1)
<Tn
5
3
(n≥2).
分析:(1)由题意知an+1=2an+λn2+(μ-2λ)n-λ-μ,故
λ=-1
μ-2λ=3
-λ-μ=0
,所以存在
λ=-1
μ=1
,使得数列{an+λn2+μn}是等比数列.
(2)由题意得bn=2n-1,要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,则有c=-1,所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立.
(3)由题意知cn=
1
n2
cn=
1
n2
1
n2-
1
4
=
1
n-
1
2
-
1
n+
1
2
,所Tn=c1+c2++c3<1+
2
3
-
1
n+
1
2
5
3
(n≥2)
,由此可证明
6n
(n+1)(2n+1)
<Tn
5
3
(n≥2).
解答:解:(1)设an+1=2an-n2+3n可化为an+1+λ(n+1)2+μ(n+1)=2(an+λn2+μn),
即an+1=2an+λn2+(μ-2λ)n-λ-μ,
λ=-1
μ-2λ=3
-λ-μ=0
,得
λ=-1
μ=1

又a1-12+1≠0,所以存在
λ=-1
μ=1
,使得数列{an+λn2+μn}是等比数列;
(2)由(1)得an-n2+n=(a1-12+1)•2n-1,得an=2n-1+n2-n,所以bn=2n-1
要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,
则有
(Sn-c)(Sn+2-c)=(Sn+1-c)2
Sn-c>0
,得c=-1,
所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立;
(3)证明:因为an=2n-1+n2-n,
所以cn=
1
n2

cn=
1
n2
1
n2-
1
4
=
1
n-
1
2
-
1
n+
1
2

所以Tn=c1+c2++c3<1+
2
3
-
1
n+
1
2
5
3
(n≥2)

又当n=2时,T2=
5
4
4
5
,符合;
当n≥3时,cn=
1
n2
1
n
-
1
n+1

Tn=c1+c2++c3>1-
1
n+1
=
n
n+1
n
n+1
6
2n+1
=
6n
(n+1)(2n+1)

综上,
6n
(n+1)(2n+1)
<Tn
5
3
(n≥2)得证.
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案