精英家教网 > 高中数学 > 题目详情

【题目】已知圆 两点,且圆心在直线.

1)求圆的方程;

2)若直线过点且被圆截得的线段长为,求的方程.

【答案】(1);(2)

【解析】试题分析:(1)把点P、Q的坐标和圆心坐标代入圆的一般方程,利用待定系数法求得系数的值;(2)分类讨论,斜率存在和斜率不存在两种情况.①当直线l的斜率不存在时,满足题意,易得直线方程;②当直线l的斜率存在时,设所求直线l的斜率为k,则直线l的方程为:y-5=kx,由点到直线的距离公式求得k的值.

试题解析:

(1)设圆的方程为,圆心 ,根据题意有,计算得出

故所求圆的方程为.

(2)如图所示, ,设是线段的中点,

.

中,可得.

当直线的斜率不存在时,满足题意,

此时方程为.

当直线的斜率存在时,设所求直线的斜率为,则直线的方程为:

,由点到直线的距离公式:

,得,此时直线的方程为.

∴所求直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于,总有.(i)求实数的范围; (ii)求证:对于,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=﹣2. ①设bn=2nan , 求数列{bn}的前n项和;
②设cn= ,若不等式cn 对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某算法的程序图如图所示,其中输入的变量x在1,2,3,…,30这30个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据: 甲的频数统计表(部分)

运行次数

输出y=1的频数

输出y=2的频数

输出y=3的频数

50

24

19

7

2000

1027

776

197

乙的频数统计表(部分)

运行次数

输出y=1的频数

输出y=2的频数

输出y=3的频数

50

26

11

13

2000

1051

396

553

当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程:x2+y2﹣4x﹣6y+m=0,若圆C与直线a:x+2y﹣3=0相交于M、N两点,且|MN|=2
(1)求m的值;
(2)是否存在直线l:x﹣y+c=0,使得圆上有四点到直线l的距离为 ,若存在,求出c的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在矩形中, 的中点,将三角形沿翻折到图②的位置,使得平面平面.

(Ⅰ)在线段上确定点,使得平面,并证明;

(Ⅱ)求所在平面构成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用AB两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.

(Ⅰ)根据频率分布直方图填写下面2×2列联表;

甲班(A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

同步练习册答案