精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9
分析:设首项为a1,公差为d,则由S4=1,S8=4,求得 a1 和d的值,再由a17+a18+a19+a20=4a1+70d,运算求得结果.
解答:解:设首项为a1,公差为d,则由S4=1,S8=4,可得 4a1+6d=1,8a1+28d=4.
解得 a1=
1
16
,d=
1
8

∴则a17+a18+a19+a20=4a1+70d=9,
故答案为 9.
点评:本题主要考查等差数列的前n项和公式的应用,等差数列的通项公式,求得 a1=
1
16
,d=
1
8
,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

同步练习册答案