精英家教网 > 高中数学 > 题目详情
我们知道在△ABC中有A+B+C=π,已知B=
π3
,求sinA+sinC的取值范围.
分析:由三角形的内角和定理及B的度数,表示出A+C的度数,用A表示出C,代入原式中利用两角和与差的正弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的值域即可确定出范围.
解答:解:∵A+B+C=π,B=
π
3

∴A+C=
3
,即C=
3
-A,
则sinA+sinC=sinA+sin(
3
-A)=sinA+sin
3
cosA-sin
3
sinA=sinA+
3
2
cosA+
1
2
sinA=
3
2
sinA+
3
2
cosA=
3
sin(A+
π
6
),
∵A为三角形的内角,且B=
π
3

∴0<A<
3
,即
π
6
<A+
π
6
6

∴sinA+sinC的取值范围是(
3
2
3
].
点评:此题考查了两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、我们知道在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD•BC.类比可得,若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则
S△BCO2=S△BCA•S△BCD

查看答案和解析>>

科目:高中数学 来源: 题型:

我们知道,在△ABC中,记D、E、F分别为BC、CA、AB的中点,则:①.AD、BE、CF相交于一点;②.该点将对应线段分成2:1两部分;类比这一结论,在四面体A-BCD中,记G1、G2、G3、G4分别为△BCD、△CDA、△DAB、△ABC的重心,则有结论:①
AG1、BG2、CG3、DG4交于一点
AG1、BG2、CG3、DG4交于一点
;②
该点将对应线段分成3:1两部分
该点将对应线段分成3:1两部分

查看答案和解析>>

科目:高中数学 来源:2015届陕西省高一下学期期中考试数学试卷(解析版) 题型:解答题

我们知道在△ABC中有A+B+C=,已知B=,求sinA+sinC的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省东莞高级中学高二(下)第一次月考数学试卷(文科)(解析版) 题型:填空题

我们知道在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD•BC.类比可得,若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则   

查看答案和解析>>

同步练习册答案