精英家教网 > 高中数学 > 题目详情

【题目】一款击鼓小游戏的规则如下:每轮游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每轮游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓是否出现音乐相互独立.

(1)玩三轮游戏,至少有一轮出现音乐的概率是多少?

(2)设每轮游戏获得的分数为X,求X的分布列及数学期望.

【答案】(1) ;(2)见解析

【解析】

(1)利用对立事件求解得出PA1)=PA2)=PA3)=PX=﹣200),求解PA1A2A3)即可得出1﹣PA1A2A3).

(2)X可能的取值为10,20,100,﹣200.运用几何概率公式得出求解相应的概率,得出分布列.

(1)设“第i轮游戏没有出现音乐”为事件Aii=1,2,3),则

PA1)=PA2)=PA3)=PX=﹣200)

所以“三轮游戏中至少有一轮出现音乐”的概率为1﹣PA1A2A3)=1﹣

因此,玩三轮游戏至少有一轮出现音乐的概率是

(2)X可能的取值为10,20,100,﹣200.根据题意,有

PX=10)1×(12

PX=20)2×(11

PX=100)3×(10

PX=﹣200)0×(13

X的分布列为:

X

10

20

100

﹣200

P

E(ξ)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某几何体中,四边形是边长为的正方形, 是直角梯形, 是直角, 是以为直角顶点的等腰直角三角形, .

(1)求证:平面平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2+ax-a),其中a是常数.

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)若存在实数k,使得关于x的方程f(x)=k在[0,+∞)上有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程.

1求直线的普通方程及曲线的直角坐标方程;

2设曲线轴的两个交点分别为,与轴正半轴的交点为,求直线分成的两部分的面积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】作出下列函数的图像:

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的定义域和值域,并写出其单调区间.

1

2

3

4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由1开始依次按如下规则,将某些整数染成红色,先染1;再染3个偶数2,4,6;再染6后面最邻近的5个连续奇数7,9,11,13,15;再染15后面最邻近的7个连续偶数16,18,20,22,24,26,28;再染此后最邻近的9个连续奇数29,31,,45;按此规则一直染下去,得到一红色子数列:1,2,4,6,7,9,11,13,15,16,,则在这个红色子数列中,由1开始的第1000个数是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小华与另外名同学进行“手心手背”游戏,规则是:人同时随机选择手心或手背其中一种手势,规定相同手势人数更多者每人得分,其余每人得分.现人共进行了次游戏,记小华次游戏得分之和为,则为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求证:

(Ⅱ)若恒成立,求的最大值与的最小值.

查看答案和解析>>

同步练习册答案