精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程.

1求直线的普通方程及曲线的直角坐标方程;

2设曲线轴的两个交点分别为,与轴正半轴的交点为,求直线分成的两部分的面积比.

【答案】1 2

【解析】(1)第(1)问,直接利用坐标互化的公式求直线l的普通方程和曲线C的直角坐标方程. (2)第(2)问,先分别求两部分的面积比.

试题解析:

1 中消去参数,得

所以直线的普通方程为.

可变形为

即得

因此曲线的直角坐标方程为.

2)设直线轴的交点为,在方程中,

,所以,

又由(1)可知

所以直线

设直线与直线交于点,联立方程组

所以两直线交点为

所以

从而四边形的面积

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥P–ABCD中,底面ABCD是边长为6的正方形,PD平面ABCDPD=8

(1) PB与平面ABCD所成角的大小;

(2) 求异面直线PBDC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求的单调区间和极值;

(2)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某物流公司欲将一批海产品从A地运往B地,现有汽车、火车、飞机三种运输工具可供选择,这三种工具的主要参考数据如下:

运输工具

途中速度(

途中费用(元/

装卸时间(

装卸费用(元/

汽车

50

80

2

200

火车

100

40

3

400

飞机

200

200

3

800

若这批海产品在运输过程中的损耗为300/,问采用哪种运输方式比较好,即运输过程中的费用与损耗之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的左、右焦点分别为,两焦点与短轴的一个顶点构成等腰直角三角形,且点在椭圆上.

(1)求椭圆的标准方程;

(2)如图所示,过椭圆的左焦点作直线(斜率存在且不为0)交椭圆两点,过右焦点作直线交椭圆两点,且,直线轴于点,动点(异于)在椭圆上运动.

①证明: 为常数;

②当时,利用上述结论求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】作出下列函数的大致图像,并写出函数的单调区间和值域:

1 2;(3

4;(5;(6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一款击鼓小游戏的规则如下:每轮游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每轮游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓是否出现音乐相互独立.

(1)玩三轮游戏,至少有一轮出现音乐的概率是多少?

(2)设每轮游戏获得的分数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中

(1)根据散点图判断,哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

(2)根据判断结果和表中数据,建立的回归方程;

(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.如果数列满足 ,其中,则称的“陪伴数列”.

(Ⅰ)写出数列的“陪伴数列”

(Ⅱ)若的“陪伴数列”是.试证明: 成等差数列.

(Ⅲ)若为偶数,且的“陪伴数列”是,证明: .

查看答案和解析>>

同步练习册答案