18£®ÔÚÊý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬ÔÙÁîan=lgTn£¬n¡Ý1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=£¨-1£©n-1$\frac{2{a}_{2n}}{{a}_{2n-1}{a}_{2n+1}}$£¬ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬Tn=Sn-$\frac{1}{{S}_{n}}$£¬ÇóTnµÄ×î´óÏîºÍ×îСÏ

·ÖÎö £¨1£©ÓÉÌâÒ⣬Êý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬ÓɵȱÈÊýÁеÄÐÔÖÊÒ×µÃTn=${100}^{\frac{n+2}{2}}$£¬´úÈëan=lgTn£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©Çó³öbnµÄ±í´ïʽ£¬ÌÖÂÛnÎªÆæÊýºÍżÊý¶ÔÓ¦µÄǰnÏîºÍΪSn£¬¼´¿ÉÇóTnµÄ×î´óÏîºÍ×îСÏ

½â´ð ½â£º£¨1£©¡ßÊý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬
¡àÓɵȱÈÊýÁеÄÐÔÖÊ£¬ÐòºÅµÄºÍÏàµÈ£¬ÔòÏîµÄ³Ë»ýÒ²ÏàµÈÖªTn=${100}^{\frac{n+2}{2}}$£¬
ÓÖan=lgTn£¬£¨n¡ÊN*£©£¬
¡àan=lgTn=lg${100}^{\frac{n+2}{2}}$=lg10n+2=n+2£®
£¨2£©bn=£¨-1£©n-1$\frac{2{a}_{2n}}{{a}_{2n-1}{a}_{2n+1}}$=£¨-1£©n-1•$\frac{{a}_{2n-1}+{a}_{2n+1}}{{a}_{2n-1}•{a}_{2n+1}}$=£¨-1£©n-1•£¨$\frac{1}{{a}_{2n+1}}$+$\frac{1}{{a}_{2n-1}}$£©£¬
µ±n=2kʱ£¬Sn=1+$\frac{1}{3}-£¨\frac{1}{3}+\frac{1}{5}£©$+£¨$\frac{1}{5}$+$\frac{1}{7}$£©+¡­+£¨$\frac{1}{2n+1}$+$\frac{1}{2n+3}$£©=1-$\frac{1}{2n+3}$=$\frac{2n+2}{2n+3}$£¬
µ±n=2k-1ʱ£¬Sn=S2K-bn+1=1+$\frac{1}{2n+3}$=$\frac{2n+4}{2n+3}$£¬
¡àSn=$\left\{\begin{array}{l}{\frac{2n+2}{2n+3}£¬}&{nΪżÊý}\\{\frac{2n+4}{2n+3}£¬}&{nÎªÆæÊý}\end{array}\right.$£¬
Ôòµ±nΪżÊýʱ£¬Tn=Sn-$\frac{1}{{S}_{n}}$=$\frac{2n+2}{2n+3}-\frac{2n+3}{2n+2}$=$\frac{-4n-5}{£¨2n+3£©£¨2n+2£©}$Ϊ¼õº¯Êý£¬¡à×î´óֵΪ${T}_{1}=-\frac{9}{20}$£¬
µ±nÎªÆæÊýʱ£¬TnΪÔöº¯Êý£¬×îСֵΪT1=$\frac{11}{30}$£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎյȲîÊýÁÐÓëµÈ±ÈÊýÁеÄÐÔÖÊ£¬ÔÙ½áºÏ¶ÔÊýµÄÔËÓÃÐÔÖʵóöÇó³öÊýÁÐ{an}µÄͨÏʽ£¬±¾Ì⿼²éÁË×ÛºÏÀûÓÃ֪ʶת»¯±äÐεÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2+cxµÄµ¼º¯ÊýΪh£¨x£©£¬f£¨x£©µÄͼÏóÔڵ㣨-2£¬f£¨-2£©£©´¦µÄÇÐÏß·½³ÌΪ3x-y+4=0£¬ÇÒh¡ä£¨-$\frac{2}{3}$£©=0£¬ÓÖÖ±Ïßy=xÊǺ¯Êýg£¨x£©=kxexµÄͼÏóµÄÒ»ÌõÇÐÏß
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ¼°kµÄÖµ£®
£¨2£©Èôf£¨x£©¡Üg£¨x£©-m+1¶ÔÓÚÈÎÒâx¡Ê[0£¬+¡Þ£©ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁи÷×麯ÊýÖУ¬±íʾͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=$\root{5}{{x}^{5}}$Óëf£¨x£©=$\sqrt{{x}^{2}}$B£®y=xÓë$y=\root{3}{x^3}$
C£®$y=\frac{£¨x-1£©£¨x+3£©}{x-1}$Óëy=x+3D£®y=1Óëy=x0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}ÖУ¬$a_1^{\;}=\frac{1}{4}$£¬ÆäǰnÏîµÄºÍΪSn£¬ÇÒÂú×ãan=$\frac{2{{S}_{n}}^{2}}{{2S}_{n}-1}$£¨n¡Ý1£©£®
£¨¢ñ£© ÇóÖ¤£ºÊýÁÐ{$\frac{1}{{S}_{n}}$}ÊǵȲîÊýÁУ»
£¨¢ò£© Ö¤Ã÷£ºS1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+¡­+$\frac{1}{n}$Sn£¼$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®µÈ²îÊýÁÐ{an}µÄǰmÏîºÍΪ30£¬Ç°2mÏîºÍΪ100£¬ÔòËüµÄǰ3mÏîºÍΪ£¨¡¡¡¡£©
A£®70B£®130C£®140D£®210

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªf£¨1+$\frac{1}{x}$£©=1+$\frac{1}{x}$+$\frac{1}{{x}^{2}}$£¬Çóf£¨x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éè¦ÈÊÇÈý½ÇÐεÄÄڽǣ¬ÏÂÁи÷¶ÔÊýÖоùÈ¡ÕýÖµµÄÊÇ £¨¡¡¡¡£©
A£®tan¦ÈºÍcos¦ÈB£®cos¦ÈºÍcot¦ÈC£®sin¦ÈºÍsec¦ÈD£®cot$\frac{¦È}{2}$ºÍsin¦È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª·Ö¶Îº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+4£¬x¡Ü0}\\{{x}^{2}-2x£¬0£¼x¡Ü4}\\{-x+2£¬x£¾4}\end{array}\right.$£¬Èôf£¨a£©=-1£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªA={x|x=m+n$\sqrt{2}$£¬m£¬n¡Êz}£®
£¨1£©Éèx1=$\frac{1}{3}$-4$\sqrt{2}$£¬x2=$\sqrt{9-4\sqrt{2}}$£¬x3=£¨1-3$\sqrt{2}$£©2£¬ÊÔÅжÏx1£¬x2£¬x3ÓëAÖ®¼äµÄ¹ØÏµ£»
 £¨2£©ÈÎÈ¡x1£¬x2£¬¡ÊA£¬ÊÔÅжÏx1+x2£¬x1x2ÓëAÖ®¼äµÄ¹ØÏµ£»
£¨3£©ÄÜ·ñÕÒµ½x0¡ÊA£®Ê¹$\frac{1}{{x}_{0}}$¡ÊAÇÒx0¡Ù¡À1£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸