【题目】如图1,矩形ABCD中,AB=1,AD=2,点E为AD中点,沿BE将△ABE折起至△PBE,如图2所示,点P在面BCDE的射影O落在BE上.
(Ⅰ)求证:BP⊥CE;
(Ⅱ)求二面角B﹣PC﹣D的余弦值.
【答案】解:(Ⅰ)由条件,点P在平面BCDE的射影O落在BE上, ∴平面PBE⊥平面BCDE,易知BE⊥CE,
∴CE⊥平面PBE,而BP平面PBE,
∴PB⊥CE.
(Ⅱ)以O为坐标原点,以过点O且平行于CD的直线为x轴,过点O且平行于BC的直线为y轴,直线PO为z轴,建立如图所示直角坐标系.
则 , , ,
设平面PCD的法向量为
则 ,即 ,令 ,可得
设平面PBC的法向量为
则 ,即 ,令 ,可得 ∴
考虑到二面角B﹣PC﹣D为钝二面角,则二面角B﹣PC﹣D的余弦值为
【解析】(Ⅰ)点P在平面BCDE的射影O落在BE上,证明CE⊥平面PBE,推出PB⊥CE.(Ⅱ)以O为坐标原点,以过点O且平行于CD的直线为x轴,过点O且平行于BC的直线为y轴,直线PO为z轴,建立如图所示直角坐标系.求出平面PCD的法向量,平面PBC的法向量利用空间向量的数量积求解二面角B﹣PC﹣D的余弦值即可.
【考点精析】本题主要考查了直线与平面垂直的性质的相关知识点,需要掌握垂直于同一个平面的两条直线平行才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0),圆Q:(x﹣2)2+(y﹣ )2=2的圆心Q在椭圆C上,点P(0, )到椭圆C的右焦点的距离为 .
(1)求椭圆C的方程;
(2)过点P作互相垂直的两条直线l1 , l2 , 且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 在(1,+∞)上是增函数,且a>0.
(Ⅰ)求a的取值范围;
(Ⅱ)求函数g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(Ⅲ)已知a>1,b>0,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若 ,则b2+c2的取值范围是( )
A.(5,6]
B.(3,5)
C.(3,6]
D.[5,6]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是( )
A.[ , +∞)
B.[ , +∞)
C.[ , +∞)
D.[ , +∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应:
X | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回归直线方程.
(2)回归直线必经过的一点是哪一点?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合S={x|x>1},T={x||x﹣1|≤2},则(RS)∪T( )
A.(﹣∞,3]
B.[﹣1,1]
C.[﹣1,3]
D.[﹣1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com