【题目】已知函数 .
(1)求函数f(x)的单调区间;
(2)证明:若a<5,则对任意 ,有 .
【答案】
(1)解:f(x)的定义域为(0,+∞),
,
∵a﹣1≥1
当a﹣1>1时,即a>2时,f(x)的单调增区间为(0,1),(a﹣1,+∞);
单调减区间为(1,a﹣1).
当a﹣1=1时,即a=2时,f(x)的单调增区间为(0,+∞)
(2)要证:对任意 ,
有 .
不防设x1>x2,
即证f(x1)﹣f(x2)>﹣(x1﹣x2)
即证f(x1)+x1>f(x2)+x2
设 ,x>0
即证当x1>x2时,g(x1)>g(x2).
即证g(x)在(0,+∞)单调递增.
∵
而△=(a﹣1)2﹣4(a﹣1)=(a﹣1)(a﹣5)
又∵2≤a<5,
∴△<0,
∴x2﹣(a﹣1)x+(a﹣1)>0恒成立,
∴ 对x∈(0,+∞)恒成立,
∴g(x)在(0,+∞)单调递增.
∴原题得证.
【解析】(1)由 ,得当a﹣1>1时,即a>2时,f(x)的单调增区间为(0,1),(a﹣1,+∞);单调减区间为(1,a﹣1).当a﹣1=1时,即a=2时,f(x)的单调增区间为(0,+∞)(2)要证:对任意 ,有 .即证f(x1)+x1>f(x2)+x2设 ,x>0,即证g(x)在(0,+∞)单调递增.由 ,由g(x)在(0,+∞)单调递增,从而原题得证.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①f(x)=x3﹣3x2是增函数,无极值.
②f(x)=x3﹣3x2在(﹣∞,2)上没有最大值
③由曲线y=x,y=x2所围成图形的面积是
④函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是(﹣∞,2)
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ex-ax-1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2-e)x.
①求函数h(x)=f (x)-g (x)的单调区间;
②若函数的值域为R,求实数m的取值范围;
(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,
求证:e-1≤a≤e2-e.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组到社区了解参加健美操运动人员的情况,用分层抽样的方法抽取了40人进行调查,按照年龄分成五个小组: ,并绘制成如图所示的频率分布直方图.
(1)求该社区参加健美操运动人员的平均年龄;
(2)如果研究小组从该样本中年龄在和的6人中随机地抽取出2人进行深入采访,求被采访的2人,年龄恰好都在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的底数)的解集为( )
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x | 3 | ﹣2 | 4 | |
y | ﹣2 | 0 | ﹣4 |
(1)求C1、C2的标准方程;
(2)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足 ?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com