精英家教网 > 高中数学 > 题目详情
已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)+a3(x﹣1)3+…+an(x﹣1)n,(其中n∈N*
(1)求a0
(2)试比较Sn与(n﹣2)2n+2n2的大小,并说明理由.
(1)Sn=3n﹣2n
(2)当n=1时,3n>(n﹣1)2n+2n2
当n=2,3时,3n<(n﹣1)2n+2n2
当n≥4,n∈N*时,3n>(n﹣1)2n+2n2

试题分析:(1)令x=1,则a0=2n,令x=2,
,∴Sn=3n﹣2n;  (3分)
(2)要比较Sn与(n﹣2)2n+2n2的大小,即比较:3n与(n﹣1)2n+2n2的大小,
当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2
当n=4,5时,3n>(n﹣1)2n+2n2;  (5分)
猜想:当n≥4时n≥4时,3n>(n﹣1)2n+2n2,下面用数学归纳法证明:
由上述过程可知,n=4n=4时结论成立,
假设当n=k(k≥4)n=k,(k≥4)时结论成立,即3n>(n﹣1)2n+2n2
两边同乘以3 得:3k+1>3[(k﹣1)2k+2k2]=k2k+1+2(k+1)2+[(k﹣3)2k+4k2﹣4k﹣2]
而(k﹣3)2k+4k2﹣4k﹣2=(k﹣3)2k+4(k2﹣k﹣2)+6=(k﹣2)2k+4(k﹣2)(k+1)+6>0∴3k+1>[(k+1)﹣1]2k+1+2(k+1)2
即n=k+1时结论也成立,
∴当n≥4时,3n>(n﹣1)2n+2n2成立.
综上得,当n=1时,3n>(n﹣1)2n+2n2
当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2﹣﹣(10分)
点评:本题是中档题,考查与n有关的命题,通过赋值法解答固定项,前n项和,以及数学归纳法的应用,考查逻辑推理能力,计算能力,常考题型
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的最低点为
(1)求不等式的解集;
(2)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若不等式对一切成立,则实数的取值范围为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a∈R,且a2+a<0,那么-a,-a3,a2的大小关系是(  )
A.a2>-a3>-aB.-a>a2>-a3
C.-a3>a2>-aD.a2>-a>-a3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数 
(1)当时,求不等式的解集;
(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不等式的解集为
A.B.C.D.R

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是任意实数,且,则下列结论正确的是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设变量x,y满足|x|+|y|≤1,则x+2y的取值范围为_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知集合,
(1)求;
(2)若集合,满足,求实数的取值范围.

查看答案和解析>>

同步练习册答案