精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系xOy中,直线y=x+b是曲线y=lnx的切线,则实数b的值是-1.

分析 设出切点坐标,求出原函数的导函数,得到函数在切点处的导数,求出切点横坐标,进一步求出切点纵坐标,把切点坐标代入切线方程求得b的值.

解答 解:设切点为(x0,lnx0),
由y=lnx,得y′=$\frac{1}{x}$,
∵直线y=x+b是曲线y=lnx的切线,
∴$\frac{1}{{x}_{0}}$=1,即x0=1,
∴lnx0=ln1=0,
把切点(1,0)代入y=x+b,得0=1+b,即b=-1.
故答案为:-1.

点评 本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设随机变量X的分布列为P(X=i)=$\frac{i}{a}$(i=1,2,3,4),则P($\frac{1}{2}<X<\frac{7}{2}$)=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sinxcosx+2cos2x-1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式mx2-mx-1<0的解集为R,则实数m的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx+mx2(m∈R)   
(I)求函数f(x)的单调区间;
(Ⅱ)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0,f′(x)为f(x)的导函数,求证:f′($\frac{a+b}{2}$)<$\frac{f(a)-f(b)}{a-b}$<f′(b).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法中,一定成立的是(  )
A.若a>b,c>d,则ab>cdB.若|a|<b,则a+b>0
C.若a>b>0,则ab>baD.若$\frac{1}{a}>\frac{1}{b}$,则a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.各项均为实数的等比数列{an}中,a1=1,a3=2,则a5=(  )
A.4B.$\sqrt{2}$C.±4D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=3$\sqrt{2}$,|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{10}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n+1}$(n∈N*),则当n=2时,f(n)是(  )
A.1+$\frac{1}{2}$B.$\frac{1}{5}$C.1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$D.非以上答案

查看答案和解析>>

同步练习册答案