精英家教网 > 高中数学 > 题目详情
4、f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足(  )
分析:先根据导数的运算法则将f′(x)=g′(x)转化为[f(x)-g(x)]′=0,然后由函数的求导法则可得答案.
解答:解:由f′(x)=g′(x),得f′(x)-g′(x)=0,
即[f(x)-g(x)]′=0,所以f(x)-g(x)=C(C为常数).
故选C.
点评:本题主要考查导数的运算法则.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数f(x)与g(x)表示同一函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)与g(x)的定义域是{x∈R|x≠±1},函数f(x)是一个偶函数,g(x)是一个奇函数,且f(x)-g(x)=
1
x-1
,则f(x)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“亲密函数”,区间[a,b]称为“亲密区间”.若f(x)=x2-3x+4与g(x)=2x-1在[a,b]上是“亲密函数”,则b-a的最大值是
1
1

查看答案和解析>>

科目:高中数学 来源:辽宁 题型:单选题

已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是(  )
A.0是f(x)的极大值,也是g(x)的极大值
B.0是f(x)的极小值,也是g(x)的极小值
C.0是f(x)的极大值,但不是g(x)的极值
D.0是f(x)的极小值,但不是g(x)的极值

查看答案和解析>>

同步练习册答案