精英家教网 > 高中数学 > 题目详情

已知偶函数f(x)在(-∞,0]上单调递减,则使f(2x-数学公式)<f(数学公式)的x取值范围是


  1. A.
    数学公式,1)
  2. B.
    [数学公式,1)
  3. C.
    数学公式,2)
  4. D.
    (-∞,1)
A
分析:由偶函数性质将已知不等式化为,由f(x)在(-∞,0]上的单调性得到[0,+∞)单调性,再把该不等式转化为具体不等式,解出即可.
解答:∵f(x)为偶函数,∴f(2x-)=f(|2x-|),
得,
∵偶函数f(x)在(-∞,0]上单调递减,
∴偶函数f(x)在[0,+∞)上单调递增,
,解得
解得
故选A.
点评:本题考查函数的奇偶性、单调性的综合应用,考查抽象不等式的求解,考查转化思想,解决本题的关键是利用函数的性质把抽象不等式具体化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,π]上单调递增,那么下列关系成立的是(  )
A、f(-π)>f(-2)>f(
π
2
)
B、f(-π)>f(-
π
2
)>f(-2)
C、f(-2)>f(-
π
2
)>f(-π)
D、f(-
π
2
)>f(-2)>f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:

3、已知偶函数f(x)在(0,+∞)上单调递增,则f(-3),f(-1),f(2)的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在R上的任一取值都有导数,且f′(1)=1,f(x+2)=f(x-2),则曲线y=f(x)在x=-5处的切线的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上满足f′(x)>0则不等式f(2x-1)<f(
1
3
)的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x-1)<f(x+3)的x的取值范围是
x>2或x<-
4
3
x>2或x<-
4
3

查看答案和解析>>

同步练习册答案