【题目】已知函数f(x)=x3﹣3x; (Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[﹣3,2]上的最值.
【答案】解:(I)∵f(x)=x3﹣3x, ∴f'(x)=3x2﹣3=3(x+1)(x﹣1).
令 f'(x)=0,得x=﹣1,x=1.
若 x∈(﹣∞,﹣1)∪(1,+∞),则f'(x)>0,
故f(x)在(﹣∞,﹣1)上是增函数,f(x)在(1,+∞)上是增函数,
若 x∈(﹣1,1),则f'(x)<0,
故f(x)在(﹣1,1)上是减函数;
(II)∵f(﹣3)=﹣18,f(﹣1)=2,f(1)=﹣2,f(2)=2,
∴当x=﹣3时,f(x)在区间[﹣3,2]取到最小值为﹣18.
∴当x=﹣1或2时,f(x)在区间[﹣3,2]取到最大值为2
【解析】(Ⅰ)先求出函数f(x)=x3﹣3x的导函数f′(x),分别令f′(x)>0和f′(x)<0便可求出函数f(x)的单调区间;(Ⅱ)分别求出两个短点f(﹣3)和f(2)的值以及极值f(﹣1)和f(1)的值,比较一下便可求出f(x)在区间[﹣3,2]上的最大值和最小值.
【考点精析】掌握利用导数研究函数的单调性和函数的最大(小)值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减;求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线
与抛物线y2=4x相交于不同的A,B两点,O为坐标原点.
(1) 如果直线
过抛物线的焦点且斜率为1,求
的值;
(2)如果
,证明:直线
必过一定点,并求出该定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面
为梯形,
底面
,
,
,
,
.
![]()
(1)求证:平面
平面
;
(2)设
为
上的一点,满足
,若直线
与平面
所成角的正切值为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
,与
,
各有一个交点,当
时,这两个交点间的距离为2,当
,这两个交点重合.
(1)分别说明
,
是什么曲线,并求出
与
的值;
(2)设当
时,
与
,
的交点分别为
,当
,
与
,
的交点分别为
,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数),设
与
的交点为
,当
变化时,
的轨迹为曲线
.
(1)写出
的普遍方程及参数方程;
(2)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,设曲线
的极坐标方程为
,
为曲线
上的动点,求点
到
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的一个焦点是
,
为坐标原点,且椭圆短轴的两个三等分点与一个焦点构成正三角形,过点
的直线交椭圆
于点
.
(1)求椭圆
的方程;
(2)设
为椭圆上一点,且满足
,当
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法: ①一组数据不可能有两个众数;
②一组数据的方差必为正数,且方差越大,数据的离散程度越大;
③将一组数据中的每个数都加上同一个常数后,方差恒不变;
④在频率分布直方图中,每个长方形的面积等于相应小组的频率.
其中错误的个数有( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入) 问:
(1)把y表示为x的函数,并求其定义域;
(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com