精英家教网 > 高中数学 > 题目详情

【题目】为了解某冷饮店的经营状况,随机记录了该店月的月营业额(单位:万元)与月份的数据,如下表:

(1)求关于的回归直线方程

(2)若在这样本点中任取两点,求恰有一点在回归直线上的概率.

附:回归直线方程中,

.

【答案】(1)(2)

【解析】分析:(1)根据题意计算平均数与回归系数,写出回归方程;

详解:(2)用分别表示所取的两个样本点所在的月份,则该试验的基本事件用列举法可得包含个基本事件,设“恰有一点在回归直线上”为事件,则包含个基本事件,用古典概型直接求概率即可。

(1),所以

于是,所以回归有线方程为:.

(2)用分别表示所取的两个样本点所在的月份,则该试验的基本事件可以表示为有序实数对,于是该试验的基本事件空间为:

,共包含个基本事件,

设“恰有一点在回归直线上”为事件,则中,共包含个基本事件,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[100,110),[110,120),[120,130)三组内的学生中,用分层抽样的方法选取28人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出一个问题的算法:

S1 输入x;

S2 x≤2,则执行S3;否则,执行S4;

S3 输出-2x-1;

S4 输出x2-6x+3.

问题:

(1)这个算法解决的是什么问题?

(2)当输入的x值为多大时,输出的数值最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 的中点, 为线段上的动点,过点 的平面截该正方体所得的截面为,则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;

③当时, 的交点满足

④当时, 为五边形;

⑤当时, 的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中,面为直角梯形, ,平面平面 是边长为2的正三角形.

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2 sin( ),直线C的极坐标方程为ρsinθ=1,射线θ=φ,θ= +φ(φ∈[0,π])与曲线C1分别交异于极点O的两点A,B.
(I)把曲线C1和C2化成直角坐标方程,并求直线C2被曲线C1截得的弦长;
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC= ,AB=3 ,AD=3,则BD的长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的正方形, 平面 平面 .

(1)证明:平面平面

(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分8分)直线l过点P4,1),

1)若直线l过点Q(-1,6),求直线l的方程;

2)若直线ly轴上的截距是在x轴上的截距的2倍,求直线l的方程.

查看答案和解析>>

同步练习册答案