精英家教网 > 高中数学 > 题目详情
(2012•日照一模)给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,则函数f(x)=x2+ax-3只有一个零点;
③函数y=2
2
sinxcosx
[-
π
4
π
4
]
上是单调递减函数;
④若lga+lgb=lg(a+b),则a+b的最小值为4.
其中真命题的序号是
①④
①④
(把所有真命题的序号都填上).
分析:①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;可由全称命题的否定的书写规则判断其真假;
②若0<a<1,则f(x)=x2+ax-3只有一个零点;可由函数的图象特征进行判断;
③先化简函数的表达式,然后利用复合函数的单调性,求出函数的单调减区间即可判断.
④若lga+lgb=lg(a+b),则a+b的最小值为4;可由基本不等式将方程转化关于a+b不等式,再解不等式求出a+b的最小值,进行验证.
解答:解:①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”是一个真命题,由于原命题是一个全称命题,故其否定是一个特称命题;正确;
②若0<a<1,则f(x)=x2+ax-3只有一个零点是个假命题,由于x=0时,f(0)<0,x趋向于负无穷大与正无穷大时函数值都是正数,故此函数至少有两个零点;
③函数y=
2
sin2x,
因为由 2kπ+
π
2
≤2x≤2kπ+
2
,∴kπ+
π
4
≤x≤kπ+
4
,(k∈Z),
∴函数y=2
2
sinxcosx
[-
π
4
π
4
]
上不是单调递减函数,故错;
④若lga+lgb=lg(a+b),则a+b的最小值为4是个真命题,
由lga+lgb=lg(a+b),得ab=a+b≤(
a+b
2
)2
解得a+b≥4,故a+b的最小值为4;
综上证明知①④是真命题
故答案为:①④
点评:本题考查命题真假判断与应用,解题的关键是熟练掌握每个命题所涉及的基础知识与基本技能,本题中②④两个命题的真假判断是个难点,其中②的判断用到了特殊值法,④的判断技巧性较强,解题时对此类技巧要注意掌握
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•日照一模)在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:BD⊥EG;
(2)求平面DEG与平面DEF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,则函数f(x)=x2+ax-3只有一个零点;
③函数y=sin(2x-
π
3
)
的一个单调增区间是[-
π
12
12
]

④对于任意实数x,有f(-x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.
其中真命题的序号是
①③④
①③④
(把所有真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知定义在R上奇函数f(x)满足①对任意x,都有f(x+3)=f(x)成立;②当x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,则f(x)=
1
|x|
在[-4,4]上根的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知f(x)=
m
n
,其中
.
m
=(sinωx+cosωx,
3
cosωx)
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)图象中相邻的两条对称轴间的距离不小于π.
(I)求ω的取值范围;
(II)在△ABC中,a,b,c分别为角A,B,C的对边,a=
7
,S△ABC=
3
2
,当ω取最大值时,f(A)=1,求b,c的值.

查看答案和解析>>

同步练习册答案