精英家教网 > 高中数学 > 题目详情
(2012•日照一模)已知f(x)=
m
n
,其中
.
m
=(sinωx+cosωx,
3
cosωx)
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)图象中相邻的两条对称轴间的距离不小于π.
(I)求ω的取值范围;
(II)在△ABC中,a,b,c分别为角A,B,C的对边,a=
7
,S△ABC=
3
2
,当ω取最大值时,f(A)=1,求b,c的值.
分析:(I)由两向量的坐标,利用平面向量的数量积运算法则列出f(x)的解析式,利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,由f(x)图象中相邻的对称轴间的距离不小于π,得到周期的一半大于等于π,即可求出ω的范围;
(II)由ω的范围,找出ω的最大值,代入确定出f(x)解析式,由f(A)=1,求出sin(A+
π
6
)的值,由A为三角形的内角,得出A+
π
6
的范围,利用特殊角的三角函数值求出A的度数,进而确定出sinA与cosA的值,由已知的面积,利用三角形面积公式列出关系式,记作①;再由a与cosA的值,利用余弦定理列出关系式,记作②,联立①②即可求出b与c的值.
解答:解:(I)∵
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx),
∴f(x)=
m
n
=(sinωx+cosωx)(cosωx-sinωx)+2
3
cosωxsinωx
=cos2ωx+
3
sin2ωx=2sin(2ωx+
π
6
),
∵f(x)图象中相邻的对称轴间的距离不小于π,
T
2
≥π,即
≥π,
则0<ω≤
1
2

(Ⅱ)当ω=
1
2
时,f(x)=2sin(x+
π
6
),
∴f(A)=2sin(A+
π
6
)=1,
∴sin(A+
π
6
)=
1
2

∵0<A<π,∴
π
6
<A+
π
6
6

∴A=
3

由S△ABC=
1
2
bcsinA=
3
2
,得到bc=2,…①
又a2=b2+c2-2bcsinA,a=
7

∴b2+c2+bc=7,…②
联立①②,
解得:b=1,c=2或b=2,c=1.
点评:此题考查了余弦定理,平面向量的数量积运算,二倍角的正弦、余弦函数公式,三角形的面积公式,以及三角函数的周期性及其求法,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•日照一模)在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:BD⊥EG;
(2)求平面DEG与平面DEF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,则函数f(x)=x2+ax-3只有一个零点;
③函数y=sin(2x-
π
3
)
的一个单调增区间是[-
π
12
12
]

④对于任意实数x,有f(-x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.
其中真命题的序号是
①③④
①③④
(把所有真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知定义在R上奇函数f(x)满足①对任意x,都有f(x+3)=f(x)成立;②当x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,则f(x)=
1
|x|
在[-4,4]上根的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,则函数f(x)=x2+ax-3只有一个零点;
③函数y=2
2
sinxcosx
[-
π
4
π
4
]
上是单调递减函数;
④若lga+lgb=lg(a+b),则a+b的最小值为4.
其中真命题的序号是
①④
①④
(把所有真命题的序号都填上).

查看答案和解析>>

同步练习册答案