精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;
(2)若f(x)在R上单调,求a的取值范围;
(3)当数学公式时,求函数f(x)的极小值.

解:f'(x)=ex[x2+(a+2)x+a+2],
(1)当a=0时,f(x)=(x2+2)ex,f'(x)=ex(x2+2x+2),
f(1)=3e,f'(1)=5e,
∴函数f(x)的图象在点A(1,f(1))处的切线方程为y-3e=5e(x-1),
即5ex-y-2e=0
(2)f'(x)=ex[x2+(a+2)x+a+2],,
考虑到ex>0恒成立且x2系数为正,
∴f(x)在R上单调等价x2+(a+2)x+a+2≥0恒成立.
∴(a+2)2-4(a+2)≤0,
∴-2≤a≤2,即a的取值范围是[-2,2],
(3)当a=-时,f(x)=(x2-x+2)ex,f'(x)=ex(x2-x-),
令f'(x)=0,得x=-,或x=1,
令f'(x)>0,得x<-,或x>1,
令f'(x)<0,得-<x<1????????????????????
x,f'(x),f(x)的变化情况如下表
X(-∞,--(-,1)1(1,+∞)
f'(x)+0-0+
f(x)极大值极小值
所以函数f(x)的极小值为f(1)=
分析:(1)先求出函数f(x)的导函数,求出切点坐标,根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成一般式即可;
(2)若f(x)在R上单调,则f'(x)=ex[x2+(a+2)x+a+2]>0恒成立,考虑到ex>0恒成立且x2系数为正,从而等价x2+(a+2)x+a+2≥0恒成立,利用判别式建立关系式,即可求出所求;
(3)先求出f′(x)=0的值,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值即可.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的极值和恒成立问题,同时考查了计算能力、转化与划归的思想,属于综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案