·ÖÎö £¨1£©ÉèM£¨x£¬y£©£¬ÓÉÌâÉèÓУº$\sqrt{{x^2}+{y^2}}=¦Ë|{x+m}|$£¬¹ÊÇúÏßCµÄ·½³ÌΪ£º£¨1-¦Ë2£©x2+y2-2m¦Ë2x-m2¦Ë2=0£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©·ÖÀàÌÖÂÛ£¬È·¶¨¦Á=3-2x1£¬¦Â=3-2x2⇒¦Á+¦Â=6-2£¨x1+x2£©£¬Éèl1£ºy=k£¨x+2£©£¬ÓÉ$\left\{{\begin{array}{l}{y=k£¨x+2£©}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$£¬ÏûÈ¥yÕûÀíµÃ£º£¨2k2+1£©x2+8k2x+8k2-2=0£¬ÀûÓÃΤ´ï¶¨Àí£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÉèM£¨x£¬y£©£¬ÓÉÌâÉèÓУº$\sqrt{{x^2}+{y^2}}=¦Ë|{x+m}|$
¹ÊÇúÏßCµÄ·½³ÌΪ£º£¨1-¦Ë2£©x2+y2-2m¦Ë2x-m2¦Ë2=0
£¨i£©¦Ë=1ʱ£¬ÇúÏßCµÄ·½³ÌΪ£ºy2=2m£¨x+m£©ÊÇÅ×ÎïÏߣ»
£¨ii£©¦Ë¡Ù1ʱ£¬ÇúÏßCµÄ·½³ÌΪ£º$\frac{{{{£¨x-\frac{{m{¦Ë^2}}}{{1-{¦Ë^2}}}£©}^2}}}{{\frac{{{m^2}{¦Ë^2}}}{{{{£¨1-{¦Ë^2}£©}^2}}}}}+\frac{y^2}{{\frac{{{m^2}{¦Ë^2}}}{{1-{¦Ë^2}}}}}=1$¦Ë£¾1ʱ£¬ÇúÏßCµÄ·½³ÌΪ½¹µãÔÚxÖáÉϵÄË«ÇúÏߣ» 0£¼¦Ë£¼1ʱ£¬ÇúÏßCµÄ·½³ÌΪ½¹µãÔÚxÖáÉϵÄÍÖÔ²£»
£¨2£©µ±$¦Ë=\frac{{\sqrt{2}}}{2}£¬m=1$ʱ£¬ÇúÏßC1µÄ·½³ÌΪ£º$\frac{{{{£¨x-1£©}^2}}}{2}+{y^2}=1$£¬ÔòÇúÏßEµÄ·½³ÌΪ£º$\frac{x^2}{2}+{y^2}=1$£¬
ÉèD£¨x3£¬y3£©£¬Ôò$\overrightarrow{AF}=£¨1-{x_1}£¬-{y_1}£©£¬\overrightarrow{FD}=£¨{x_3}-1£¬{y_3}£©$£¬ÓÉ$\overrightarrow{AF}=¦Á\overrightarrow{FD}$£¬µÃ-y1=¦Áy3£¬Ôò$¦Á=-\frac{y_1}{y_3}$£¬
£¨i£©ADÓëxÖá²»´¹Ö±Ê±£¬AD·½³ÌΪ£º$y=\frac{y_1}{{{x_1}-1}}£¨x-1£©$ÓÉ $\left\{{\begin{array}{l}{y=\frac{y_1}{{{x_1}-1}}£¨x-1£©}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$£¬ÏûÈ¥x£¬ÕûÀíµÃ£º$£¨3-2{x_1}£©{y^2}+2{y_1}£¨{x_1}-1£©y-y_1^2=0$£®
ÓɸùÓëϵÊýµÄ¹ØÏµÓУº${y_1}{y_3}=-\frac{y_1^2}{{3-2{x_1}}}⇒-\frac{y_1}{y_3}=3-2{x_1}⇒¦Á=3-2{x_1}$£»
£¨ii£©ADÓëxÖᴹֱʱ£¬x1=1£¬¦Á=1Ò²Âú×㣺¦Á=3-2x1£¬
ͬÀí¿ÉÖ¤£º¦Â=3-2x2⇒¦Á+¦Â=6-2£¨x1+x2£©
Éèl1£ºy=k£¨x+2£©£¬ÓÉ$\left\{{\begin{array}{l}{y=k£¨x+2£©}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$£¬ÏûÈ¥yÕûÀíµÃ£º£¨2k2+1£©x2+8k2x+8k2-2=0£¬
¾ÝÌâÉèÓÐk¡Ù0ÇÒ¡÷=£¨8k2£©-24£¨2k2+1£©£¨8k2-2£©£¾0£¬¡à0£¼k2£¼$\frac{1}{2}$£¬${x_1}+{x_2}=-\frac{{8{k^2}}}{{2{k^2}+1}}⇒¦Á+¦Â=6+\frac{{16{k^2}}}{{2{k^2}+1}}=14-\frac{8}{{2{k^2}+1}}$£¬$0£¼{k^2}£¼\frac{1}{2}⇒1£¼2{k^2}+1£¼2$£¬
¡à¦Á+¦Â¡Ê£¨6£¬10£©£¬¹Ê¦Á+¦ÂµÄȡֵ·¶Î§Îª£¨6£¬10£©£®
µãÆÀ ±¾Ì⿼²éÇúÏßÓë·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖԲλÖùØÏµµÄÔËÓ㬿¼²éΤ´ï¶¨Àí£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2015-2016ѧÄê½Î÷Ê¡ÄϲýÊи߶þÎÄÏÂѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ
ÒÑÖªº¯Êý
£®
£¨1£©µ±
ʱ£¬½â²»µÈʽ
£»
£¨2£©µ±
ʱ£¬
,Çó
µÄȡֵ·¶Î§£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{\sqrt{3}}{3}$ | B£® | 1 | C£® | $\frac{\sqrt{2}}{2}$ | D£® | $\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8 | B£® | 6 | C£® | 5 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2015-2016ѧÄê½Î÷Ê¡ÄϲýÊиßÒ»ÏÂѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ
ÔÚ
ÖУ¬
£®
£¨1£©Çó
掙术
£¨2£©Èô
£¬b=
£¬Çó
µÄÃæ»ý
£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5 | B£® | 10 | C£® | 2$\sqrt{6}$ | D£® | 4$\sqrt{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{4}$ | B£® | $\frac{¦Ð}{6}$ | C£® | $\frac{¦Ð}{3}$ | D£® | $\frac{¦Ð}{12}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com