Ñо¿ÎÊÌ⣺¡°ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2-bx+c£¾0£¬½â¼¯Îª£¨1£¬2£©£¬½â¹ØÓÚxµÄ²»µÈʽcx2-bx+a£¾0¡±ÓÐÈçϽⷨ£º
½â£ºÓÉcx2-bx+a£¾0ÇÒx¡Ù0£¬ËùÒÔ
(c¡Á2-bx+a)
x2
£¾0µÃa£¨
1
x
£©2-
b
x
+c£¾0£¬Éè
1
x
=y£¬µÃay2-by+c£¾0£¬ÓÉÒÑÖªµÃ£º1£¼y£¼2£¬¼´1£¼
1
x
£¼2£¬¡à
1
2
£¼x£¼1ËùÒÔ²»µÈʽcx2-bx+a£¾0µÄ½â¼¯ÊÇ£¨
1
2
£¬1£©£®
²Î¿¼ÉÏÊö½â·¨£¬½â¾öÈçÏÂÎÊÌ⣺ÒÑÖª¹ØÓÚxµÄ²»µÈʽ
b
(x+a)
+
(x+c)
(x+d)
£¼0µÄ½â¼¯ÊÇ£º£¨-3£¬-1£©¡È£¨2£¬4£©£¬Ôò²»µÈʽ
bx
(ax-1)
+
(cx-1)
(dx-1)
£¼0µÄ½â¼¯ÊÇ
(-
1
2
£¬-
1
4
)¡È(
1
3
£¬1)
(-
1
2
£¬-
1
4
)¡È(
1
3
£¬1)
£®
·ÖÎö£ºÓɸø³öµÄ²»µÈʽ¿ÉÖªx¡Ù0£¬·Ö×Ó·Öĸͬʱ³ýÒÔxºó»»Ôª£¬¼´y=-
1
x
£¬ÔòÓÉÒÑÖª²»µÈʽµÄ½â¼¯µÃµ½ÁËyµÄ·¶Î§£¬½øÒ»²½Çó½â·Öʽ²»µÈʽµÃµ½xµÄ·¶Î§£®
½â´ð£º½â£ºÓÉ
bx
(ax-1)
+
(cx-1)
(dx-1)
£¼0ÇÒx¡Ù0£¬µÃ
b
a-
1
x
+
c-
1
x
d-
1
x
£¼0
£¬
Áîy=-
1
x
£¬Ôò
b
y+a
+
y+c
y+d
£¼0
£¬
¡ày¡Ê£¨-3£¬-1£©¡È£¨2£¬4£©£¬¼´-
1
x
¡Ê
£¨-3£¬-1£©¡È£¨2£¬4£©£¬
ÓÉ-3£¼-
1
x
£¼-1£¬½âµÃ
1
3
£¼x£¼1
£»
ÓÉ2£¼-
1
x
£¼4
£¬½âµÃ-
1
2
£¼x£¼-
1
4
£®
¡à²»µÈʽ
bx
(ax-1)
+
(cx-1)
(dx-1)
£¼0µÄ½â¼¯ÊÇ(-
1
2
£¬-
1
4
)¡È(
1
3
£¬1)
£®
¹Ê´ð°¸Îª£º(-
1
2
£¬-
1
4
)¡È(
1
3
£¬1)
£®
µãÆÀ£º±¾Ì⿼²éÁËÀà±ÈÍÆÀí£¬¿¼²éÁË·Öʽ²»µÈʽµÄ½â·¨£¬½â´ðµÄ¹Ø¼üÊÇÃ÷È·²»µÈʽ
bx
(ax-1)
+
(cx-1)
(dx-1)
£¼0µÄ·Ö×Ó·Öĸͬʱ³ýÒÔxºóÔ­²»µÈʽ²»µÈºÅ²»±ä£¬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñо¿ÎÊÌ⣺¡°ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2-bx+c£¾0µÄ½â¼¯Îª£¨1£¬2£©£¬½â¹ØÓÚxµÄ²»µÈʽcx2-bx+a£¾0¡±£¬ÓÐÈçϽⷨ£º
½â£ºÓÉax2-bx+c£¾0?a-b(
1
x
)+c(
1
x
)2£¾0
£¬Áîy=
1
x
£¬Ôòy¡Ê(
1
2
£¬ 1)
£¬ËùÒÔ²»µÈʽcx2-bx+a£¾0µÄ½â¼¯Îª(
1
2
£¬ 1)
£®
²Î¿¼ÉÏÊö½â·¨£¬ÒÑÖª¹ØÓÚxµÄ²»µÈʽ
k
x+a
+
x+b
x+c
£¼0
µÄ½â¼¯Îª£¨-2£¬-1£©¡È£¨2£¬3£©£¬Çó¹ØÓÚxµÄ²»µÈʽ
kx
ax-1
+
bx-1
cx-1
£¼0
µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñо¿ÎÊÌ⣺¡°ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2-bx+c£¾0µÄ½â¼¯Îª£¨1£¬2£©£¬Ôò¹ØÓÚxµÄ²»µÈʽcx2-bx+a£¾0ÓÐÈçϽⷨ£ºÓÉax2-bx+c£¾0?a-b(
1
x
)+c(
1
x
)2£¾0
£¬Áîy=
1
x
£¬Ôòy¡Ê(
1
2
£¬1)
£¬ËùÒÔ²»µÈʽcx2-bx+a£¾0µÄ½â¼¯Îª(
1
2
£¬1)
£®²Î¿¼ÉÏÊö½â·¨£¬ÒÑÖª¹ØÓÚxµÄ²»µÈʽ
k
x+a
+
x+b
x+c
£¼0
µÄ½â¼¯Îª£¨-2£¬-1£©¡È£¨2£¬3£©£¬Ôò¹ØÓÚxµÄ²»µÈʽ
kx
ax-1
+
bx-1
cx-1
£¼0
µÄ½â¼¯
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñо¿ÎÊÌ⣺¡°ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2-bx+c£¾0µÄ½â¼¯Îª£¨1£¬3£©£¬½â¹ØÓÚxµÄ²»µÈʽcx2-bx+a£¾0¡±£¬ÓÐÈçϽⷨ£º
½â£ºÓÉax2-bx+c£¾0?a-b(
1
x
)+c(
1
x
)2£¾0
£¬Áîy=
1
x
£¬Ôòy¡Ê(
1
3
£¬ 1)
£¬ËùÒÔ²»µÈʽcx2-bx+a£¾0µÄ½â¼¯Îª(
1
3
£¬ 1)
£®
²Î¿¼ÉÏÊö½â·¨£¬ÒÑÖª¹ØÓÚxµÄ²»µÈʽ
k
x+a
+
x+b
x+c
£¼0
µÄ½â¼¯Îª£¨-2£¬-1£©¡È£¨2£¬3£©£¬Ôò¹ØÓÚxµÄ²»µÈʽ
kx
ax-1
+
bx-1
cx-1
£¼0
µÄ½â¼¯Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñо¿ÎÊÌ⣺¡°ÒÑÖª¹ØÓÚxµÄ²»µÈʽax2-bx+c£¾0µÄ½â¼¯Îª£¨1£¬2£©£¬½â¹ØÓÚxµÄ²»µÈʽcx2-bx+a£¾0¡±£¬ÓÐÈçϽⷨ£ºÓÉax2-bx+c⇒a-b£¨
1
x
£©+c£¨
1
x
£©2£¾0£¬Áîy=
1
x
£¬Ôòy¡Ê(
1
2
£¬1)
£¬ËùÒÔ²»µÈʽcx2-bx+a£¾0µÄ½â¼¯Îª£¨
1
2
£¬1£©£®Àà±ÈÉÏÊö½â·¨£¬ÒÑÖª¹ØÓÚxµÄ²»µÈʽ
k
x+a
+
x+b
x+c
£¼0
µÄ½â¼¯Îª£¨-3£¬-2£©¡È£¨1£¬2£©£¬Ôò¹ØÓÚxµÄ²»µÈʽ
kx
ax-1
+
bx-1
cx-1
£¼0
µÄ½â¼¯Îª
£¨-1£¬-
1
2
£©¡È£¨
1
3
£¬
1
2
£©
£¨-1£¬-
1
2
£©¡È£¨
1
3
£¬
1
2
£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñо¿ÎÊÌ⣺¡°ÒÑÖª¹ØÓÚxµÄ·½³Ìax2-bx+c=0µÄ½â¼¯Îª{1£¬2}£¬½â¹ØÓÚxµÄ·½³Ìcx2-bx+a=0¡±£¬ÓÐÈçϽⷨ£º
½â£ºÓÉax2-bx+c=0⇒a-b(
1
x
)+c(
1
x
)2=0
£¬Áîy=
1
x
£¬Ôòy¡Ê{
1
2
£¬ 1}
£¬
ËùÒÔ·½³Ìcx2-bx+a=0µÄ½â¼¯Îª{
1
2
£¬ 1}
£®
²Î¿¼ÉÏÊö½â·¨£¬ÒÑÖª¹ØÓÚxµÄ·½³Ì4x+3•2x+x-91=0µÄ½âΪx=3£¬Ôò
¹ØÓÚxµÄ·½³Ìlog2(-x)-
1
x2
+
3
x
+91=0
µÄ½âΪ
x=-
1
8
x=-
1
8
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸