精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和为Sn=n(n+1),正项数列{bn}满足bn+2=
b2n+1bn
,且b1b3=4,b4=8.
(1)求数列{an}、{bn}的通项;
(2)数列{cn}满足cn=anbn,求数列{an}的前n项和Tn
分析:(1)由{an}的前n项和为Sn=n(n+1),利用an=
S1,n=1
Sn-Sn-1,n≥2
能求出数列{an}的通项;由正项数列{bn}满足bn+2=
b2n+1
bn
,且b1b3=4,b4=8,利用等比数列的性质能求出数列{bn}的通项.
(2)由(1)和题设件,利用错位相减法能求出数列{an}的前n项和Tn
解答:解:(1)∵数列{an}的前n项和为Sn=n(n+1),
∴当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,
∵a1=1满足an=2n,
∴an=2n.
∵正项数列{bn}满足bn+2=
b2n+1
bn

∴{bn}是等比数列,设其公比为q,且q>0
∵且b1b3=4,b4=8,
b12q2=4
b1q3=8
,解得b1=1,q=2,
bn=2n-1
(2)由(1)知cn=anbn=2n•2n-1=n•2n
Tn=1•2+2•22+3•23+…+n•2n,①
2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1,②
由①-②得:
-Tn=2+22+23+…+2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1

=2n+1-2-n•2n+1
∴Tn=n•2n+1+2-2n+1=(n-1)•2n+1+2.
点评:本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项an=
1
pn-q
,实数p,q满足p>q>0且p>1,sn为数列{an}的前n项和.
(1)求证:当n≥2时,pan<an-1
(2)求证sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求证sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:
1
2
1
3
2
3
1
4
2
4
3
4
1
5
2
5
3
5
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下运算和结论:
①a24=
3
8

②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;
③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=
n2+n
4

④若存在正整数k,使Sk<10,Sk+1≥10,则ak=
5
7

其中正确的结论是
①③④
①③④
.(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若数列{an}的前n项和Sn=2n+1,则数列{an}为等比数列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是

查看答案和解析>>

同步练习册答案