精英家教网 > 高中数学 > 题目详情
若以曲线y=f(x)任意一点M(x,y)为切点作切线l,曲线上总存在异于M的点N(x1 y1),以点N为切点作切线l1,且ll1,则称曲线y=f(x)具有“可平行性”.下列曲线具有可平行性的编号为______.(写出所有满足条件的函数的编号)
①y=x3-x    
②y=x+
1
x
   
③y=sina
④y=(x-2)2+lnx.
由题意得,曲线具有可平行性的条件是:方程y′=a(a是导数值)至少有两个根,
①、由y′=3x2-1知,当y′=-1时,x的取值唯一,只有0,不符合题意;
②、由y′=1-
1
x2
=a(x≠0且a≠1),即
1
x2
=1-a,此方程有两不同的个根,符合题意;
③、由y'=cosx和三角函数的周期性知,cosx=a(-1≤a≤1)的解有无穷多个,符合题意;
④、由y'=2x-4+
1
x
(x>0),令2x-4+
1
x
=a,则有2x2-(4+a)x+1=0,当△=0时解唯一,不符合题意,
故答案为:②③.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•茂名二模)已知函数f(x)=-x3+x2+bx,g(x)=alnx,(a>0).
(1)当a=x时,求函数g(x)的单调区间;
(2)若f(x)存在极值点,求实数b的取值范围;
(3)当b=0时,令F(x)=
f(x),x<1
g(x),x≥1
.P(x1,F(x1)),Q(x2,F(x2))为曲线y=F(x)上的两动点,O为坐标原点,能否使得△POQ是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)若以曲线y=f(x)任意一点M(x,y)为切点作切线l,曲线上总存在异于M的点N(x1 y1),以点N为切点作切线l1,且l∥l1,则称曲线y=f(x)具有“可平行性”.下列曲线具有可平行性的编号为
②③
②③
.(写出所有满足条件的函数的编号)
①y=x3-x    
②y=x+
1x
   
③y=sina
④y=(x-2)2+lnx.

查看答案和解析>>

科目:高中数学 来源:四川省模拟题 题型:解答题

已知函数f(x)=m+a1x+a2x2+a3x3+…+anxn+an+1xn+1,n∈N*。
(1)若f(x)=m+x2+x3
①求以曲线y= f(x)上的点P(1,f(1))为切点的切线的斜率;
②若函数f(x)在x=x1处取得极大值,在x=x2处取得极小值,且点(x1,f(x1))在第二象限,点(x2,f(x2))位于y轴负半轴上,求m的取值范围。
(2)当an=时,设函数f(x)的导函数为f'(x),令Tn=,证明:Tn≤f'(1)-1。

查看答案和解析>>

科目:高中数学 来源:2013年安徽省合肥市高考数学二模试卷(理科)(解析版) 题型:填空题

若以曲线y=f(x)任意一点M(x,y)为切点作切线l,曲线上总存在异于M的点N(x1 y1),以点N为切点作切线l1,且l∥l1,则称曲线y=f(x)具有“可平行性”.下列曲线具有可平行性的编号为    .(写出所有满足条件的函数的编号)
①y=x3-x    
②y=x+   
③y=sina
④y=(x-2)2+lnx.

查看答案和解析>>

同步练习册答案