精英家教网 > 高中数学 > 题目详情

已知直线l过抛物线的焦点F,交抛物线于AB两点,且点ABy轴的距离分别为mn,则的最小值为( )

A B C4 D6

 

【答案】

C

【解析】

试题分析:抛物线的焦点,准线方程为,由于直线l过抛物线的焦点F,交抛物线于AB两点,且点ABy轴的距离分别为mn所以由抛物线的定义得其最小值即为通径长.故选C.

考点:抛物线的定义及其几何性质

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过抛物线C:y2=2px(p>0)的焦点且与C的对称轴垂直,l与C交于A、B两点,P为C的准线上一点,且S△ABP=36,则抛物线C的方程为
y2=16x
y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:x2=2py(p>0)的焦点为F,A(x0,y0)(x0≠0)是抛物线C上的一定点.
(1)已知直线l过抛物线C的焦点F,且与C的对称轴垂直,l与C交于Q,R两点,S为C的准线上一点,若△QRS的面积为4,求p的值;
(2)过点A作倾斜角互补的两条直线AM,AN,与抛物线C的交点分别为M(x1,y1),N(x2,y2).若直线AM,AN的斜率都存在,证明:直线MN的斜率等于抛物线C在点A关于对称轴的对称点A1处的切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过抛物线y2=4x的焦点F,交抛物线于A、B两点,且点A、B到y轴的距离分别为m、n,则m+n+2的最小值为(  )

查看答案和解析>>

同步练习册答案