精英家教网 > 高中数学 > 题目详情
20.已知幂函数y=f(x)的图象过点($\sqrt{3}$,$\frac{1}{3}$),则f($\frac{1}{2}$)=4.

分析 在解答时可以先设出幂函数的解析式,由于过定点,从而可解得函数的解析式,故而获得问题的解答.

解答 解:∵幂函数y=f(x)=xα的图象过点($\sqrt{3}$,$\frac{1}{3}$),
∴${\sqrt{3}}^{α}$=$\frac{1}{3}$,解得:α=-2,
故f(x)=x-2,f($\frac{1}{2}$)=${(\frac{1}{2})}^{-2}$=4,
故答案为:4.

点评 本题考查的是幂函数的图象与性质以及求解析式问题.在解答的过程当中充分体现了幂函数的定义、性质知识的应用,同时待定系数法求参数的思想在此题中也得到了淋漓尽致的展现.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx.
(Ⅰ)y=kx与f(x)相切,求k的值;
(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+$\frac{a-1}{x}$-1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.“双节”期间,高速公路车辆较多,某调查公司在一服务区从七座以下的小型汽车中按进服务区的先后每间隔50辆就抽取一辆的样本方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段;[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.
(1)求这40辆小型汽车车速的众数和中位数的估计值;
(2)若从车速在[60,70)内的车辆中任抽取2辆,求车速在[65,70)内的车辆恰有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(I)证明:平面POC⊥平面PAD;
(II)若CD=$\sqrt{2}$,三棱锥P-ABD与C-PBD的体积分别为V1、V2,求证V1=2V2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函数F(x)=f(x)+x-a有且仅有两个零点,则实数a的取值范围是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=x2-ax+2a-4的一个零点在区间(-2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=($\frac{1}{2}$)x-2x
(1)若f(x)=$\frac{15}{4}$,求x的值;
(2)若不等式f(2m-mcosθ)+f(-1-cosθ)<f(0)对所有θ∈[0,$\frac{π}{2}$]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设直线l1:mx-2my-6=0与l2:(3-m)x+my+m2-3m=0.
(1)若l1∥l2,求l1,l2之间的距离;
(2)若直线l2与两坐标轴的正半轴围成的三角形的面积最大,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线$y=-\frac{1}{4}{x^2}$的准线方程是(  )
A.$y=\frac{1}{16}$B.y=1C.$y=-\frac{1}{16}$D.y=-1

查看答案和解析>>

同步练习册答案