精英家教网 > 高中数学 > 题目详情
9.设直线l1:mx-2my-6=0与l2:(3-m)x+my+m2-3m=0.
(1)若l1∥l2,求l1,l2之间的距离;
(2)若直线l2与两坐标轴的正半轴围成的三角形的面积最大,求直线l2的方程.

分析 (1)若l1∥l2,求出m的值,即可求l1,l2之间的距离;
(2)表示直线l2与两坐标轴的正半轴围成的三角形的面积,配方法求出最大,即可求直线l2的方程.

解答 解:(1)若l1∥l2,则$\frac{1}{2}=-\frac{3-m}{m}$,∴m=6,
∴l1:x-2y-1=0,l2:x-2y-6=0
∴l1,l2之间的距离d=$\frac{5}{\sqrt{1+4}}$=$\sqrt{5}$;
(2)由题意,$\left\{\begin{array}{l}{m>0}\\{3-m>0}\end{array}\right.$,∴0<m<3,
直线l2与两坐标轴的正半轴围成的三角形的面积S=$\frac{1}{2}$m(3-m)=$-\frac{1}{2}(m-\frac{3}{2})^{2}$+$\frac{9}{8}$,
∴m=$\frac{3}{2}$时,S最大为$\frac{9}{8}$,此时直线l2的方程为2x+2y-3=0.

点评 本题考查直线方程,考查直线与直线的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则双曲线的离心率的取值范围是(  )
A.(1,+∞)B.$(1,1+\sqrt{2})$C.$(1,\sqrt{3})$D.$(1-\sqrt{2},1+\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知幂函数y=f(x)的图象过点($\sqrt{3}$,$\frac{1}{3}$),则f($\frac{1}{2}$)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.圆x2+y2+4x-4y-8=0与圆x2+y2-2x+4y+1=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(文)设f(x)=sinx-2cosx+1的导函数为f′(x),则f′($\frac{3π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{a}{x}$-2,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为2x+y-3=0,求a的值;
(2)求函数y=f(x)的单调区间;
(3)若曲线y=f(x)都在直线(a+1)x+y-2(a-1)=0的上方,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,程序框图的输出值S=(  )
A.21B.15C.28D.-21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=lg(|x-2|+|x-a|-3)的定义域为R,则实数a的取值范围是a<-1或a>5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中既是奇函数又在区间(0,+∞)上单调递减的是(  )
A.y=e-xB.y=ln(-x)C.y=x3D.$y=\frac{1}{x}$

查看答案和解析>>

同步练习册答案