精英家教网 > 高中数学 > 题目详情
已知双曲线的渐近线与圆相切,则双曲线的离心率为(  )
A.B.2C.D.3
B

试题分析:根据题意,由于双曲线的渐近线与圆相切,那么可知圆心(0,2)到直线 的距离为圆的半径为1,即可知,则其离心率为 =2,故答案为B.
点评:本题以双曲线方程与圆的方程为载体,考查直线与圆相切,考查双曲线的几何性质,解题的关键是利用直线与圆相切时,圆心到直线的距离等于半径
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的左焦点为,过点的直线交椭圆于两点.当直线经过椭圆的一个顶点时,其倾斜角恰为

(Ⅰ)求该椭圆的离心率;
(Ⅱ)设线段的中点为的中垂线与轴和轴分别交于两点,
记△的面积为,△为原点)的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设轴交于点,向量
(Ⅰ)求动点的轨迹方程;
(Ⅱ)设点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点到两点的距离之和为,设点的轨迹为曲线.
(1)写出的方程;
(2)设过点的斜率为)的直线与曲线交于不同的两点,,点轴上,且,求点纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点在椭圆上,若点坐标为,,且,则的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于直线的对称点的坐标为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数)的图象恒过定点,椭圆
)的左,右焦点分别为,直线经过点且与⊙相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆轴上方的交点为,且,求内切圆的方程.

查看答案和解析>>

同步练习册答案