精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,满足下列条件的有两个的是(
A.
B.
C.a=1,b=2,c=3
D.a=3,b=2,A=60°

【答案】A
【解析】解:A、由 得, = =
∵0°<B<180°,且b>a,∴B=45°或135°,则A符合题意;
B、由 得, = =1,
∵0°<C<180°,∴C=90°,则B不符合题意;
C、由a=1,b=2,c=3得,a+b=c,则不能构成三角形,则C不符合题意;
D、由 得, = =
∵0°<B<180°,且b<a,∴B<A=60°,即只有一解,则D不符合题意;
故选A.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且btanB=
(1)求角B的值;
(2)若△ABC的面积为 ,a+c=8,求边b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1 , F2 , 线段OF1 , OF2的中点分别为B1 , B2 , 且△AB1B2是面积为4的直角三角形.过B1作l交椭圆于P、Q两点,使PB2垂直QB2 , 求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,Sn是其前n项和.已知a1+a3=16,S4=28.
(1)求数列{an}的通项公式
(2)当n取何值时Sn最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AC⊥BC,AC=BC= AA1=2,D是AC的中点.

(1)求证:B1C∥平面A1BD;
(2)求直线AC与平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元). (Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为了测量对岸A,B两点的距离,沿河岸选取C,D两点,测得CD=2km,∠CDB=∠ADB=30°,∠ACD=60°,∠ACB=45°,求A,B两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足a1=1,a2=2,b1=2,且对任意的正整数i,j,k,l,当i+j=k+l时,都有ai+bj=ak+bl , 则 的值是(
A.2012
B.2013
C.2014
D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,0]时, ,函数 ,则关于x的不等式f(x)<g(x)的解集为(
A.(﹣2,﹣1)∪(﹣1,0)
B.
C.
D.

查看答案和解析>>

同步练习册答案