精英家教网 > 高中数学 > 题目详情
下面四个命题:①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②把函数y=3sin(2x+
π
3
)的图象向右平移
π
3
个单位,得到y=3sin2x的图象;
③函数f(x)=ax2-lnx的图象在x=1处的切线平行于直线y=x,则(
2
2
,+∞)是f(x)的单调递增区间;
④正方体的内切球与其外接球的表面积之比为1:3;
其中所有正确命题的序号为
①③④
①③④
分析:根据含有量词的命题的否定的方法,得到①正确;根据函数图象平移的规律,得到②错误;根据导数的几何意义,结合利用导数判断函数单调性的方法,得到③正确;根据正方体的结构特征,结合球的表面积公式,得到④正确.
解答:解:对于①,它是一个含有量词的命题
“?x∈R,x2-x>0”即“存在x∈R,使得x2-x>0成立”,其否定应该是不存在满足条件的x.
也就是说,对于任意的x∈R,都有x2-x≤0,即“?x∈R,x2-x≤0”,故①正确;
对于②,设F(x)=3sin(2x+
π
3
),图象向右平移
π
3
个单位,应该得到F(x-
π
3
)=3sin(2x-
π
3
),
而不是y=3sin2x的图象,故②错误;
对于③,若函数f(x)=ax2-lnx的图象在x=1处的切线平行于直线y=x,
说明f′(1)=1,而f/(x)=2ax-
1
x

所以2a-1=1,得a=1,函数表达式为f(x)=x2-lnx
f/(x)=2x-
1
x
=
2x2-1
x
,当x∈(
2
2
,+∞),f′(x)>0,函数为增函数,故③正确;
对于④,设正方体的棱长为a,则它的内切球半径为
a
2
,表面积为4π•(
a
2
)2
=4πa2
而正方体的外接球半径为
3
2
a
,可得外接球的表面积为4π•(
3
a
2
)
2
=12πa2
∴内切球与其外接球的表面积之比为1:3,故④正确
故答案为:①③④
点评:本题综合了含有量词的命题的否定、导数的几何意义、运用导数判断函数的单调性和球的内接外切等知识点,考查了命题真假的判断,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下面四个命题:
①m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
②m,n是平面α内的两条直线,直线l在平面α外,则l⊥α是l⊥m且l⊥n的充分不必要条件;
③函数a=b=0是f(x)=x2+b|x-a|为偶函数的必要非充分条件;
b=
ac
是a,b,c
三个数成等比数列的既不充分又非必要条件;
其中真命题的序号是
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)下面四个命题:
①函数y=loga(x+1)+1(a>0且a≠1)的图象必经过定点(0,1);
②已知命题p:?x∈R,sinx≤1,则¬p:?x∈R,sinx≤1;
③过点(-1,2)且与直线2x-3y+4=0垂直的直线方程为3x+2y-1=0;
④在区间(-2,2)上随机抽取一个数x,则ex>1的概率为
13

其中所有正确命题的序号是:
①③
①③

查看答案和解析>>

科目:高中数学 来源:山东省郓城一中2012届高三上学期寒假作业数学试卷(7) 题型:022

给出下面四个命题:

①m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;

②b=是a,b,c三个数成等比数列的既不充分又非必要条件;

③p、q为简单命题,则“p且q为假命题”是“p或q为假命题”的必要不充分条件;

④两个向量相等是这两个向量共线的充分非必要条件.

其中真命题的序号是________(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市休宁中学高三(上)数学综合练习试卷1(文科)(解析版) 题型:填空题

给出下面四个命题:
①m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
②b=是a,b,c三个数成等比数列的既不充分又非必要条件;
③p、q为简单命题,则“p且q为假命题”是“p或q为假命题”的必要不充分条件;
④两个向量相等是这两个向量共线的充分非必要条件.
其中真命题的序号是    (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市休宁中学高三(上)数学综合练习试卷1(文科)(解析版) 题型:填空题

给出下面四个命题:
①m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
②b=是a,b,c三个数成等比数列的既不充分又非必要条件;
③p、q为简单命题,则“p且q为假命题”是“p或q为假命题”的必要不充分条件;
④两个向量相等是这两个向量共线的充分非必要条件.
其中真命题的序号是    (写出所有真命题的序号).

查看答案和解析>>

同步练习册答案