精英家教网 > 高中数学 > 题目详情

已知2<x<4,则的取值范围是_________________

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年南昌市一模理)(12分)已知函数f (x) =lnx,g(x) =,(a为常数),若直线ly =f(x), y =g(x)的图象都相切,且ly = f(x)的图象相切的切点的横坐标为1.

(1)求直线l的方程及a的值;

(2) 当 2 ≤m <时,求h(x)= f(x)―f(x)[2g(x)- m +1]在[,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数在x=与x =l时都取得极值

(1)求a、b的值与函数f(x)的单调区间

(2)若对x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2013年黑龙江省高三第四次联考理科数学试卷(解析版) 题型:选择题

已知集合A={x|-l≤x≤3},集合B=|x|log2x<2},则A B=

A.{x|1≤x≤3}                           B.{x|-1≤x≤3}

C.{x| 0<x≤3}                            D.{x|-1≤x<0}

 

查看答案和解析>>

科目:高中数学 来源:河北省期中题 题型:解答题

已知函数f(x)=㏑x-ax2+bx(a>0)且导数f‵(x)=0.
(1)试用含有a的式子表示b,并求f(x)的单调区间;
(2)对于函数图象上不同的两点A(x1,y1),且x1<x2,如果在函数图像上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l//AB,则称AB存在“相依切线”.特别地,当时,又称AB存在“中值相依切线”.试问:在函数f(x)上是否存在两点A,B使得它存在“中值相依切线”?若存在,求A,B的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导数f′(x)=3x2-3ax,f(0)=b,a,b为实数,1<a<2.

(1)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;

(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;

(3)设函数F(x)=[f′(x)+6x+1]·e2x,试判断函数F(x)的极值点个数.

查看答案和解析>>

同步练习册答案