精英家教网 > 高中数学 > 题目详情
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(﹣∞,0),(1,+∞)上是减函数,又 
(1)求f(x)的解析式;
(2)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围、

解:(1)f'(x)=3ax2+2bx+c,
由已知f'(0)=f'(1)=0,

解得
∴f'(x)=3ax2﹣3ax,

∴a=﹣2,
∴f(x)=﹣2x3+3x2
(2)令f(x)≤x,即﹣2x3+3x2﹣x≤0,
∴x(2x﹣1)(x﹣1)≥0,
或x≥1.
又f(x)≤x在区间[0,m]上恒成立,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx+2,且f(-5)=3,则f(5)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3-bx+1且f(-4)=7,则f(4)=
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx+1,f(-2)=2,则f(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bsinx+6,a、b∈R,若f(3)=10,则f(-3)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(x)=ax3+bx5+cx3+dx-6,F(-2)=10,则F(2)的值为(  )
A、-22B、10C、-10D、22

查看答案和解析>>

同步练习册答案