精英家教网 > 高中数学 > 题目详情

若对任意x∈R,不等式x2≥2ax-1恒成立,则实数a的取值范围是________.

[-1,1]
分析:由已知,不等式x2-2ax+1≥0恒成立,根据二次函数图象与二次不等式解的关系可知须△≤0,解此不等式即可.
解答:不等式x2≥2ax-1恒成立,即不等式x2-2ax+1≥0恒成立.∵x2的系数1>0,∴△=4a2-4≤0,即a2≤1,解得a∈[-1,1].
故答案为:[-1,1].
点评:本题考查不等式(函数)恒成立问题.由于本题是二次不等式,故采用数形结合的思想,利用根据二次函数图象与二次不等式解的关系来解决.要掌握好“三个二次”的关系,以及其中蕴含的数形结合、转化的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α,β是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=
2x-k
x2+1
的定义域为[α,β].
(Ⅰ)判断函数f(x)在定义域内的单调性,并证明.
(Ⅱ)记:g(k)=maxf(x)-minf(x),若对任意k∈R,恒有g(k)≤a•
1+k2
成立,
求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知α,β是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数数学公式的定义域为[α,β].
(Ⅰ)判断函数f(x)在定义域内的单调性,并证明.
(Ⅱ)记:g(k)=maxf(x)-minf(x),若对任意k∈R,恒有数学公式成立,
求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知α,β是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=
2x-k
x2+1
的定义域为[α,β].
(Ⅰ)判断函数f(x)在定义域内的单调性,并证明.
(Ⅱ)记:g(k)=maxf(x)-minf(x),若对任意k∈R,恒有g(k)≤a•
1+k2
成立,
求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江师范附中高三(上)第一周周考数学试卷(理科)(9.9)(解析版) 题型:解答题

已知α,β是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数的定义域为[α,β].
(Ⅰ)判断函数f(x)在定义域内的单调性,并证明.
(Ⅱ)记:g(k)=maxf(x)-minf(x),若对任意k∈R,恒有成立,
求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江师范附中高三(上)第一周周考数学试卷(理科)(9.9)(解析版) 题型:解答题

已知α,β是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数的定义域为[α,β].
(Ⅰ)判断函数f(x)在定义域内的单调性,并证明.
(Ⅱ)记:g(k)=maxf(x)-minf(x),若对任意k∈R,恒有成立,
求实数a 的取值范围.

查看答案和解析>>

同步练习册答案