精英家教网 > 高中数学 > 题目详情

在△ABC中,角ABC所对的边分别为abc,已知cos C+(cos Asin A)cos B=0.
(1)求角B的大小;
(2)若ac=1,求b的取值范围.

(1)(2)b<1.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知a、b、c分别为△ABC三个内角A、B、C的对边,acosC+asinC-b-c=0.
(1)求A;
(2)若a=2,△ABC的面积为,求b、c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角ABC所对的边分别是abc,设平面向量e1e2,且e1e2.
(1)求cos 2A的值;
(2)若a=2,求△ABC的周长L的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)求函数的最小正周期;
(2)在中,角A,B,C的对边分别为a,b,c,且满足,若,求角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角的对边分别为,且.
(1)求角的大小;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.

(1)求A、C两点间的距离;(精确到0.01)
(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C所对的边分别为a,b,c,且f(A)=2cos sin+sin2-cos2.
(1)求函数f(A)的最大值;
(2)若f(A)=0,C=,a=,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中内角ABC的对边分别为abc,已知abcos Ccsin B.
(1)求B
(2)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cos A的值;
(2)求c的值.

查看答案和解析>>

同步练习册答案